Skip to main content

Iron Oxide/Reduced Graphene Oxide Composites for the Sensing of Toxic Chemicals

  • Chapter
  • First Online:
Nanostructured Materials and their Applications

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Iron oxide/rGO nanocomposites are of great importance for its application in sensors, supercapacitors, electrical devices, drug delivery, etc. Due to their extremely good magnetic and electrical properties, they have been widely studied by researchers across the world. Also, the high surface to volume ratio and good adsorption properties makes it extremely useful for the sensing of various toxic chemicals. The properties of this composite depend upon the size and number of iron oxide nanoparticles distributed over the rGO sheet. Therefore, this chapter deals with the synthesis of iron oxide/rGO nanocomposites for its application in the sensing of various toxic chemicals. A detailed study has also been made on the sensing mechanism of various chemicals by iron oxide/rGO nanocomposites. This chapter is primarily helpful for the beginners to understand the synthesis procedures and sensing properties of iron oxide/rGO composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Opuchovic, O., Kareiva, A.: Historical hematite pigment: synthesis by an aqueous sol-gel method, characterization, and application for the coloration of ceramic glazes. Ceram. Int. 41, 4504–4513 (2015)

    Article  CAS  Google Scholar 

  2. Bhujel, R., Rai, S., Deka, U., Swain, B.P.: Electrochemical, bonding network and electrical properties of reduced graphene oxide-Fe2O3 nanocomposite for supercapacitor electrodes applications. JALCOM 792, 250–259 (2019)

    CAS  Google Scholar 

  3. Mansour, S.A., Ibrahim, M.M.: Electrical investigation of nanostructured Fe2O3/p-Si heterojunction diode fabricated using the sol-gel technique. J. Electron. Mater. 46, 6502–6507 (2017)

    Article  CAS  Google Scholar 

  4. Leonardi, S.G., Mirzaei, A., Bonavita, A., Santangelo, S., Frontera, P., Pantò, F., Antonucci, P.L., Neri, G.: A comparison of the ethanol sensing properties of -iron oxide nanostructures prepared via the sol-gel and electrospinning techniques. Nanotechnology 27, 075502 (2016)

    Article  CAS  Google Scholar 

  5. Movlaee, K., Ganjali, M., Norouzi, P., Neri, G.: Iron-based nanomaterials/graphene composites for advanced electrochemical sensors. Nanomater 7, 406 (2017)

    Article  Google Scholar 

  6. Saha, V.C., Sabuj, M.M.A., Shams, P., Rahman, S., Qadir, M.R., Islam, M.R., Gulshan, F.: Synthesis and characterization of reduced graphene oxide reinforced polymer matrix composite. IOP Conf. Ser. Materi. Sci. Eng. 438, 012008 (2018)

    Article  Google Scholar 

  7. Cao, W., Ma, Y., Zhou, W., Guo, L.: One-pot hydrothermal synthesis of RGO-Fe3O4 hybrid nanocomposite for removal of Pb(II) via magnetic separation. Chem. Res. Chin. U. 31, 508–513 (2015)

    Article  CAS  Google Scholar 

  8. Zhang, X., Jiang, B., Xie, Y., Du, F.: One-pot hydrothermal synthesis of Fe3O4/rGO nanocomposite for enhanced lithium storage, Indian. J. Chem. 53 A, 265–273 (2014)

    Google Scholar 

  9. Hao, Y., Teja, A.S.: Continuous hydrothermal crystallization of –Fe2O3 and Co3O4 Nanoparticles. J. Mater. Res. 18, 415–422 (2011)

    Google Scholar 

  10. Guo, S., Zhang, G., Guo, Y., Yu, J.C.: Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon 60, 437–444 (2013)

    Article  CAS  Google Scholar 

  11. Meng, F., Li, J., Cushing, S.K., Bright, J., Zhi, M., Rowley, J.D., Wu, N.: Photocatalytic water oxidation by hematite/reduced graphene oxide composites. ACS Catal. 3, 746–751 (2013)

    Article  CAS  Google Scholar 

  12. Hui, C., Shen, C., Yang, T., Bao, L., Tian, J., Ding, H., Li, C., Gao, H.J.: Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J. Phys. Chem. C 112, 11336–11339 (2008)

    Article  CAS  Google Scholar 

  13. Zhu, S., Chen, M., Ren, W., Yang, J., Qu, S., Li, Z., Diao, G.: Microwave assisted synthesis of α-Fe2O3/reduced graphene oxide as anode material for high performance lithium ion batteries. New J. Chem. 39, 7923–7931 (2015)

    Article  CAS  Google Scholar 

  14. Singh, R.K., Kumar, R., Singh, D.P.: Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 6, 64993–65011 (2016)

    Google Scholar 

  15. Bhunia, P., Kim, G., Baik, C., Lee, H.: A strategically designed porous iron-iron oxide matrix on graphene for heavy metal adsorption. Chem. Commun. 48, 9888–9890 (2012)

    Article  CAS  Google Scholar 

  16. Alwahib, A.A.A., Mustapha Kamil, Y., Abu Bakar, M.H., Noor, A.S.M., Yaacob, M.H., Lim, H.N., Mahdi, M.A.: Reduced graphene oxide/maghemite nanocomposite for detection of lead ions in water using surface plasmon resonance. IEEE Photon. J. 10, 1–10 (2018)

    Article  Google Scholar 

  17. Vuong Hoan, N.T., Anh Thu, N.T., Duc, H.V., Cuong, N.D., Quang Khieu, D., Vo, V.: Fe3O4/reduced graphene oxide nanocomposite: synthesis and its application for toxic metal ion removal. J. Chem. 2016, 1–10 (2016)

    Article  Google Scholar 

  18. Basu, A.K., Chauhan, P.S., Awasthi, M., Bhattacharya, S.: α-Fe2O3 loaded rGO nanosheets based fast response/recovery CO gas sensor at room temperature. Appl. Surf. Sci. 465, 56–66 (2019)

    Article  CAS  Google Scholar 

  19. Dong, Y., Zhang, X., Cheng, X., Xu, Y., Gao, S., Zhao, H., Huo, L.: Highly selective NO2 sensor at room temperature based on nanocomposites of hierarchical nanosphere-like α-Fe2O3 and reduced graphene oxide. RSC Adv. 4, 57493–57500 (2014)

    Article  CAS  Google Scholar 

  20. Guo, L., Kou, X., Ding, M., Wang, C., Dong, L., Zhang, H., Lu, G.: Reduced graphene oxide/α-Fe2O3 composite nanofibers for application in gas sensors. Sens. Actuat. B-Chem. 244, 233–242 (2017)

    Article  CAS  Google Scholar 

  21. Xu, S.P., Sun, F.Q., Pan, Z.Z., Huang, C.W., Yang, S.M., Long, J.F., Chen, Y.: Reduced graphene oxide-based ordered macroporous films on a curved surface: general fabrication and application in gas sensors. ACS Appl. Mater. Interfaces 8, 3428–3437 (2016)

    Article  CAS  Google Scholar 

  22. Cheng, Y.: A sensor for detection of 4-nitrophenol based on a glassy carbon electrode modified with a reduced graphene oxide/Fe3O4 nanoparticle composite. Int. J. Electrochem. Sci. 12, 7754–7764 (2017)

    Article  CAS  Google Scholar 

  23. Liu, L., Zhu, X., Zeng, Y., Wang, H., Lu, Y., Zhang, J., Li, L.: An electrochemical sensor for diphenylamine detection based on reduced graphene oxide/Fe3O4-molecularly imprinted polymer with 1,4-Butanediyl-3,3’-bis-l-vinylimidazolium Dihexafluorophosphate ionic liquid as cross-linker. Polymers 10, 1329 (2018)

    Article  Google Scholar 

  24. Long, M., Qin, Y., Tan, B., Zhou, B.: Rhb adsorption performance of magnetic adsorbent Fe3O4/RGO composite and its regeneration through a fenton-like reaction. Nano-Micro Lett. 6, 125–135 (2014)

    Article  Google Scholar 

  25. Xiong, L., Zheng, L., Xu, J., Liu, W., Kang, X., Wang, Y., Xia, J.: A non-enzyme hydrogen peroxide biosensor based on Fe3O4/RGO nanocomposite material. ECS Electrochem. Lett. 3, B26–B29 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Dr. Ramdas Pai and Mrs. Vasanthi Pai endowment fund as acknowledged by one of the author’s Rabina Bhujel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabina Bhujel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhujel, R., Rai, S., Deka, U., Biswas, J., Swain, B.P. (2021). Iron Oxide/Reduced Graphene Oxide Composites for the Sensing of Toxic Chemicals. In: Swain, B.P. (eds) Nanostructured Materials and their Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-8307-0_5

Download citation

Publish with us

Policies and ethics