Skip to main content

Nanowire Nanosensors for Biological and Medical Application

  • Chapter
  • First Online:
Nanostructured Materials and their Applications

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 721 Accesses

Abstract

Nanotechnology becomes an emerging concept and plays an important role in medical science particularly in drug delivery during the treatment of serious sickness. The responses of the nanowire to an electromagnetic field generated by a separate device can be used to control the release of a preloaded drug. This system eliminates tubes and wires required by other implantable devices that can lead to infection and other complications. This tool also allows applying drugs as needed directly to the site of injury. This technology has tremendous potential to improve the precision of lung cancer therapy and has become a key technology in the development of more powerful pharmaceutical treatments against cancer. Nanomedicine products can, be loaded with chemotherapeutic agents and specifically targeted to the tumor site, thus decreasing the side effects and increasing the therapeutic effect of the drugs. Particularly, silver nanomaterials can find many remarkable applications in clinical practice since they possess optimal chemical reactivity for the functionalization of their surfaces with biologically active moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navalakhe, R.M., Nandedkar, T.D.: Application of nanotechnology in biomedicine. Indian J. Exp. Biol. 45, 160–165 (2007)

    CAS  Google Scholar 

  2. Sahoo, S.K., Parveen, S., Panda, J.J.: The present and future of nanotechnology in human health care. Nanomedicine 3, 20–31 (2007)

    Article  CAS  Google Scholar 

  3. Drabu, S., Khatri, S., Babu, S., Verma, D.: Nanotechnology: an introduction to future drug delivery system. J. Chem. Pharm. Res. 2, 171–179 (2010)

    CAS  Google Scholar 

  4. Putheti, R.R., Okigbo, R.N., Saiadvanapu, M., Chavanpati, S.: Nanotechnology importance in the pharmaceutical industry. Afr. J. Pure Appl. Chem. 2, 27–31 (2008)

    Google Scholar 

  5. Patolsky, F., Zheng, G., Lieber, C.M.: Nanowire sensors for medicine and the life sciences. Nanomedicine 1, 51–65 (2006)

    Article  CAS  Google Scholar 

  6. Ma, Y.L., Henry, J.A.: The antidotal effect of a acid glycoprotein on amitriptyline toxicity in cardiac myocytes. Toxicology 169, 133–144 (2001)

    Article  CAS  Google Scholar 

  7. Gabel, A., Hinkelbein, J.: Hypotensive cardio-circulatory failure and metabolic acidosis after suicidal intoxication with trmipramine and quetiapine. Anaesthesist 53, 53–58 (2004)

    Article  CAS  Google Scholar 

  8. Moghimi, S.M., Hunter, A.C., Murray, J.C.: Nanomedicine: current status and future prospects. FASEB J 19, 311–330 (2005)

    Article  CAS  Google Scholar 

  9. Ferreira, L., Karp, J.M., Nobre, L., Langer, R.: New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 3, 136–146 (2008)

    Article  CAS  Google Scholar 

  10. Wu, X., Liu, H., Liu, J., et al.: Immuofluorescent labelling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003)

    Google Scholar 

  11. Doucey, M.A., Carrara, S.: Nanowire sensors in cancer. Trends Biotechnol. 37, 86–99 (2019)

    Article  CAS  Google Scholar 

  12. Elhassa, G.O., Alfarouk, K.O.: (2015) Stem cell therapy in drug discovery and development. J. Pharmacovigilance 3, e140 (2015). https://doi.org/10.4172/2329-6887.1000e141

    Article  CAS  Google Scholar 

  13. Agrawal, S., Prajapati, R.: Nanosensors their pharmacentical Applications. Int. J. Pharm. Sci. Nanotechnol. 4, 1528–1535 (2012)

    Google Scholar 

  14. Blume-Jensen, P., Henter, T.: Oncogenic kinase signalling. Nature 41, 355–365 (2001)

    Article  Google Scholar 

  15. Cohen, P.: Protein Kinases—the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315 (2002)

    Article  CAS  Google Scholar 

  16. Gschwind, A., Fischer, O.M., UIIrich, A.: The discovery of receptor tyrosine: targets for cancer therapy. Nat. Rev. Cancer 4, 361–370 (2004)

    Google Scholar 

  17. Peck, S.C.: Analysis of protein phosphorylation: methods and strategies for studying kinases and substracts. Plant J. 45, 512–522 (2006)

    Article  CAS  Google Scholar 

  18. Tagliatic, F., Bottoni, A., Bosetti, A., Zatelli, M.C., Uberti, E.C.D.: Utilization of luminescent technology to develop a kinase assay: Cdk4 as a model system. J. Pbarm. Biomed Anal. 39, 811–814 (2005)

    Article  Google Scholar 

  19. Wang, W.U., Chen, C., Lin, K.H., Fang, Y., Lieber, C.M.: Label-free detection of small-molecule-protein interaction by using nanowire nanosensors. Proc. Natl. Acad. Sci USA 2, 3208–3212 (2005)

    Article  Google Scholar 

  20. Cavalcanti, A., Shirinzadeh, B., Kretly, L.C.: Medical nanorobotics for diabetes control. Nanomedicine 4, 127–138 (2008)

    Article  CAS  Google Scholar 

  21. Narayan, R.J.: Pulsed laser deposition of functionally gradient diamond like carbon-metal nanocomposites. Diam. Relat. Mater. 14, 1319–1330 (2005)

    Article  CAS  Google Scholar 

  22. Freitas, R.A., Jr.: Nanotechnology, nanomedicine and nanosurgery. Int. J. Surg. 3, 1–4 (2005a)

    Article  Google Scholar 

  23. Marchant, R.E., Zhang, T., Qiu, Y., Ruegsegger, M.A.: Surfactants that mimic the glycocalyx. United States patent US 6759388 (1999)

    Google Scholar 

  24. Freitas, R.A., Jr.: What is Nanomedicine? Nanomedicine 1, 2–9 (2005b)

    Article  CAS  Google Scholar 

  25. Freitas, R.A., Jr.: Nanotechnology, Nanomedicine and Nanosurgery. Int. J. Surg. 3, 243–247 (2005c)

    Article  Google Scholar 

  26. Musa, G., Mustata, I., Ciupina, V., Vladoiu, R., Prodan, G., Vasile, E., Ehrich, H.: Diamond—like nanostructured carbon film using thermionic vacuum arc. Diamond Rel. Mater. 13, 1398–1401 (2004)

    Article  CAS  Google Scholar 

  27. Rutherglen, C., Burke, P.: Carbon nanotube radio. Nano Lett. 7, 3296–3299 (2007)

    Article  CAS  Google Scholar 

  28. Ricciardi, L., Pitz, I., Sarawi, S.F.A., Varadan, V., Abbott, D.: Investigation into the future of RFID in biomedical applications. Proc. SPIE-Int. Soc. Opt. Eng. 5119, 199–209 (2003)

    Google Scholar 

  29. Ricci, A., Grisanti, M., De Munari, I., Ciampolini, P.: Improved pervasive sensing with RFID: an ultra-low power basedband processor for UHF tags. IEEE Trans. Very Large Scale Integr (VLSI) Syst 17, 1719–1729 (2009)

    Google Scholar 

  30. Stadler, K., Masignani, V., Eickmann, M., Becker, S., Abrignani, S., Klenk, H.D., Rappuoli, R.: SARS—beginning to understand a new virus. Nat. Rev. Microbiol. 1, 209–218 (2003)

    Google Scholar 

  31. Kim, K., Park, C., Kwon, D., Kim, D., Meyyappan, M., Jeon, S., Lee, J.S.: Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens. Bioelectron. 77, 695–701 (2016)

    Article  CAS  Google Scholar 

  32. Atlas, R.M.: Bioterrorism and biodefence research: Changing the focus of microbiology. Nat. Rev. Microbiol. 1, 70–74 (2003)

    Article  CAS  Google Scholar 

  33. Shen, F., Wang, J., Xu, Z., Wu, Y., Chen, Q., Li, X., Jie, X., Li, L., Yao, M., Guo, X., et al.: Rapid flu diagnosis. Using silicon nanowire sensor. Nano Lett. 12, 3722–3730 (2012)

    Google Scholar 

  34. Kao, L.T.H., Shankar, L., Kang, T.G., Zhang, G., Tay, G.K.I., Rafei, S.R.M., Lee, C.W.H.: Multiplexed detection and differentiation of the DNA strains for influenza A (H1N1 2009) using a silicon-based microfluidic system. Biosens. Bioelectron 26, 2006–2011 (2011)

    Article  CAS  Google Scholar 

  35. Inci, F., Tokel, O., Wang, S., Gurkan, U.A., Tasoglu, S., Kuritzkes, D.R., Demirci, U.: Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. ACS Nano 7, 4733–4745 (2013)

    Article  CAS  Google Scholar 

  36. Zhang, G.J., Zhang, L., Huang, M.J., Luo, Z.H.H., Tay, G.K.I., Lim, E.J.A., Kang, T.G., Chen, Y.: Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sens. Actuators B Chem. 146, 138–144 (2010)

    Article  CAS  Google Scholar 

  37. Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X., Lieber, C.M.: Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 101, 14017–14022 (2004)

    Article  CAS  Google Scholar 

  38. Ibarlucea, B., Akbar, T.F., Kim, K., Rim, T., Baek, C.K., Ascoli, A., Tetzlaff, R., Baraban, L., Cuniberti, G.: Ultrasensitive detection of Ebola matrix protein in a memristor mode. Nano Res. 11, 1057–1068 (2018)

    Article  CAS  Google Scholar 

  39. Shen, F., Wang, J., Xu, Z., Wu, Y., Chen, Q., Li, X., Jie, X., Li, L., Yao, M., Guo, X., et al.: Rapid flu diagnosis using silicon nanowire sensor. Nano Lett. 12, 3722–3730 (2012)

    Article  CAS  Google Scholar 

  40. Quach, Q.H., Jung, J., Kim, H., Chung, B.H.: A simple, fast and highly sensitive assay for the detection of telomerase activity. Che. Commun. 49, 6596–6598 (2013)

    Article  CAS  Google Scholar 

  41. Blackburn, E.H.: Structure and function of telomeres. Nature 350, 569–573 (1991)

    Article  CAS  Google Scholar 

  42. Cong, Y., Shay, J.W.: Actions of human telomerase beyond telomeres. Cell Res. 18, 725–732 (2008)

    Google Scholar 

  43. Wang, W.U., Chen, C., Lin, K.H., Fang, Y., Lieber, C.M.: Label—free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc Natl Acad Sci USA 102, 3208–3218 (2005)

    Google Scholar 

  44. Hsiao, C.Y., Lin, C.H., Hung, C.H., Su, C.J., Lo, Y.R., Lee, C.C., Lin, H.C., Ko, F.H., Huang, T.Y., Yang, Y.S.: Novel poly-silicon nanowire field effect transistor for biosensing application. Biosens. Bioelectron. 24, 1223–1229 (2009)

    Google Scholar 

  45. Lee, H.S., Kim, K.S., Kim, C.J., Hahn, S.K., Jo, M.H.: Electrical detection of Vegts for cancer diagnoses using anti-vascular endothermial growth factor aptamer-modified Si nanowire fets. Biosens. Bioelectron. 24, 1801–1805 (2009)

    Google Scholar 

  46. Lee, H.S., et al.: Electrical detection of VEGFs for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified Si nanowire FETs. Biosens. Bioelectron. 24, 1801–1805 (2009)

    Article  CAS  Google Scholar 

  47. Puppo, F., et al.: Femto-molar sensitive field effect tran-sistor biosensors based on silicon nanowires and antibodies. In: SENSORS, pp. 1–4. IEEE (2013)

    Google Scholar 

  48. Puppo, F., et al.: Memristor-based devices for sensing. In: 2014 IEEE international symposium on circuits and systems (ISCAS), pp. 2257–2260. IEEE (2014)

    Google Scholar 

  49. Puppo, F., et al.: Memristive biosensors under varying humidity conditions. IEEE Trans. Nanobiosci. 13, 19–30 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nonganbi Chanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanu, S.N., Swain, B.P. (2021). Nanowire Nanosensors for Biological and Medical Application. In: Swain, B.P. (eds) Nanostructured Materials and their Applications. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-8307-0_19

Download citation

Publish with us

Policies and ethics