Skip to main content

Developments in Three-Dimensional Scanning Techniques and Scanners

  • Conference paper
  • First Online:
Emerging Trends in Mechanical Engineering

Abstract

Three-dimensional scanning is increasingly used in numerous domains such as medicine, computer graphics, and architecture. The first three-dimensional scanning technology was evolved in the 1960s. There are an immense variety of methods to scan objects and their assortment depends primarily on the type of the object and its location. The objective of this study is to provide an overview of three-dimensional scanning technologies and methodologies which were projected in the existing industrial as well as scientific literature. All through the paper, basic physics of surface reflectivity and a variety of related techniques are reviewed, which consist, mainly, of laser scanning and photogrammetry, as well as the three-dimensional scanners, augmented with combinational and comparative studies. These studies are helpful for intending to make a clearer distinction on the relevance and reliability of the possible preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Javed MA, Won SHP, Khamesee MB, Melek WW, Owen W (2013) A laser scanning based reverse engineering system for 3D model generation. IECON Proc Indus Electron Conf 4334–4339. https://doi.org/10.1109/IECON.2013.6699832

  2. Peterka J, Morovič L, Pokorný P, Kováč M, Hornák F (2013) Optical 3D Scanning of Cutting Tools. Appl Mech Mater 421:663–667. https://doi.org/10.4028/www.scientific.net/amm.421.663

    Article  Google Scholar 

  3. Voicu AC, Gheorghe GI (2013) Complex 3D measuring by multiple laser scanning of automotive parts. Adv Mater Res 837:511–516. https://doi.org/10.4028/www.scientific.net/amr.837.511

    Article  Google Scholar 

  4. Todorov Y, Todorova G, Nikolay B, Bogdanova G, Todorov T, Noev N (2013) Digitization and 3D scanning of historical artifacts. Digit Present Preserv Cult Sci Herit 3:133–138

    Google Scholar 

  5. Kumar S, Snyder D, Duncan D, Cohen J, Cooper J (2003) Digital preservation of ancient cuneiform tablets using 3D-scanning. Proc Int Conf 3-D Digit Imaging Model 3DIM 326–333. https://doi.org/10.1109/IM.2003.1240266

  6. Ares M, Royo S, Vidal J, Campderrós L, Panyella D, Pérez F, Vera S, González Ballester MA (2014) 3D Scanning System for In-Vivo Imaging of Human Body. In: Fringe 2013. pp 899–902. Springer Berlin Heidelberg, Berlin, Heidelberg

    Google Scholar 

  7. Berryman F, Pynsent P, Fairbank J, Disney S (2008) A new system for measuring three-dimensional back shape in scoliosis. Eur Spine J 17:663–672. https://doi.org/10.1007/s00586-007-0581-x

    Article  Google Scholar 

  8. Glinkowski W, Sitnik R, Witkowski M, Kocoń H, Bolewicki P, Górecki A (2009) Method of pectus excavatum measurement based on structured light technique. J. Biomed. Opt. 14:044041. https://doi.org/10.1117/1.3210782

    Article  Google Scholar 

  9. Jaspers S, Hopermann H, Sauermann G, Hoppe U, Lunderstädt R, Ennen J (1999) Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device. Ski. Res. Technol. 5:195–207. https://doi.org/10.1111/j.1600-0846.1999.tb00131.x

    Article  Google Scholar 

  10. Bindean I-A, Stoian V (2013) Determination of the remaining bearing capacity of an existing slab using 3D scanning technology. Recent Adv Civ Min Eng 136–140

    Google Scholar 

  11. Brozović M, Avsec A, Tevcic M (2013) Dimensional control of complex geometry objects using 3d scanning technology. In: Proceedings of the 14th International Scientific Conference on Production Engineering–Cim 2013, Biograd, Hrvatska

    Google Scholar 

  12. Bernardini F, Rushmeier H (2002) The 3D model acquisition pipeline. Comput. Graph. Forum. 21:149–172. https://doi.org/10.1111/1467-8659.00574

    Article  Google Scholar 

  13. History of 3D scanners, https://www.modena.co.za/history-of-3d-scanners/

  14. Curless B (2000) From Range Scans to 3D Models. ACM SIGGRAPH Comput. Graph. 33:38–41

    Article  Google Scholar 

  15. Chougule VN, Gosavi HS, Dharwadkar MM, Gaind AA (2018) Review of Different 3D Scanners and Scanning Techniques. IOSR J Eng 41–44

    Google Scholar 

  16. Abdel-Bary EBRAHIM M (2013) 3D Laser Scanners’ Techniques Overview. Int J Sci Res 4:2319–7064

    Google Scholar 

  17. Heritage GL, Large ARG (2009) Laser Scanning for the Environmental Sciences. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  18. Pfeifer N, Briese C (2014) Laser scanning—principles and applications. GeoSiberia 2007.Int Exhib Sci Congr 1–20. https://doi.org/10.3997/2214-4609.201403279

  19. Moussa W (2014) Integration of Digital Photogrammetry and Terrestrial Laser Scanning

    Google Scholar 

  20. Fröhlich C, Mettenleiter M, Härtl F, Dalton G, Hines D (2000) Imaging laser radar for 3-D modelling of real world environments. Sens. Rev. 20:273–282. https://doi.org/10.1108/02602280010351019

    Article  Google Scholar 

  21. Mechelke K, Kersten TP, Lindstaedt M (2007) Comparative Investigation into the Accuarcy Behaviour of the New Generation of Terrestrial Laser Scanning Systems. Opt. 3-D Meas. Tech. VIII I:319–327

    Google Scholar 

  22. Mayer R (1999) Scientific Canadian : invention and innovation from Canada’s National Research Council. Vancouver : Raincoast Books

    Google Scholar 

  23. Mikulski, S.: Laser triangulation in three-dimension al scanners. 485–491

    Google Scholar 

  24. Photogrammetry, https://en.wikipedia.org/wiki/Photogrammetry

  25. 3D scanning, https://en.wikipedia.org/wiki/3D_scanning

  26. Baltsavias EP (1999) A comparison between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote Sens. 54:83–94. https://doi.org/10.1016/S0924-2716(99)00014-3

    Article  Google Scholar 

  27. Daneshmand M, Helmi A, Avots E, Noroozi F, Alisinanoglu F, Arslan HS, Gorbova J, Haamer RE, Ozcinar C, Anbarjafari G (2018) 3D Scanning: A Comprehensive Survey

    Google Scholar 

  28. England H (2018) 3D Laser Scanning for Heritage: Advice and Guidance on the Use of Laser Scanning in Archaeology and Architecture

    Google Scholar 

  29. Valanis A, Georgopoulos A, Sofronidou M (2009) Scanning for microns. Technology

    Google Scholar 

  30. Naughton TJ, Falldorf C, Onural L, Ferraro P, Depeursinge C, Krueger S, Emery Y, Hennelly BM, Kujawifiska M (2010) Capture, processing, and display of real-world 3D objects using digital holography. 2010 9th Euro-American Work. Inf. Opt. WIO 2010. 3–5. https://doi.org/10.1109/WIO.2010.5582528

  31. Levoy M (1999) The digital Michelangelo project. Proc 2nd Int Conf 3-D Digit Imaging Model. 3DIM 1999. 2–11. https://doi.org/10.1109/IM.1999.805329

  32. Lu N, Wang Q, Wang S, Zhang R (2015) The application of 3d laser scanning in the survey and measuring of guyue bridge of song dynasty in Yiwu City. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2:185–190. https://doi.org/10.5194/isprsannals-II-5-W3-185-2015

  33. Fengyun G, Hongquan X (2013) Status and development trend of 3D laser scanning technology in the mining field. In: Proceedings of the 2013 International Conference on Remote Sensing,Environment and Transportation Engineering. pp 407–410. Atlantis Press, Paris, France

    Google Scholar 

  34. Guo J, Jiang J, Wu L, Zhou W, Wei L (2016) 3D modeling for mine roadway from laser scanning point cloud. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp 4452–4455. IEEE

    Google Scholar 

  35. Du H, Xiong W, Wang H, Yuan B, Wang Z (2014) Configuration Modeling and Experimental Verification with 3D Laser Scanning Technology for a Constrained Elastica Cable. Int J Signal Process. Image Process. Pattern Recognit. 7:363–370. https://doi.org/10.14257/ijsip.2014.7.4.34

  36. Yang B, Liu Y, Dong Z, Liang F, Li B, Peng X (2017) 3D local feature BKD to extract road information from mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 130:329–343. https://doi.org/10.1016/j.isprsjprs.2017.06.007

    Article  Google Scholar 

  37. Yang B, Fang L, Li J (2013) Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 79:80–93. https://doi.org/10.1016/j.isprsjprs.2013.01.016

    Article  Google Scholar 

  38. Zai D, Guo Y, Li J, Luo H, Lin Y, Sun Y, Huang P, Wang C (2016) 3D road surface extraction from mobile laser scanning point clouds. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). pp 1595–1598. IEEE

    Google Scholar 

  39. Wang J, Lindenbergh R, Menenti M (2017) SigVox – A 3D feature matching algorithm for automatic street object recognition in mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 128:111–129. https://doi.org/10.1016/j.isprsjprs.2017.03.012

    Article  Google Scholar 

  40. Guan H, Li J, Yu Y, Wang C, Chapman M, Yang B (2014) Using mobile laser scanning data for automated extraction of road markings. ISPRS J. Photogramm. Remote Sens. 87:93–107. https://doi.org/10.1016/j.isprsjprs.2013.11.005

    Article  Google Scholar 

  41. Kim D-M, Kim H (2013) Digital Single Lens Reflex (DSLR) Camera

    Google Scholar 

  42. Rahrig M, Luib A (2017) Sri Dalada Maligawa - 3D-Scanning and Documentation of the Temple of the Sacred Tooth Relic at Kandy, Sri Lanka. ISPRS Ann. Photogramm. Remote Sens Spat Inf Sci 4:229–236. https://doi.org/10.5194/isprs-annals-IV-2-W2-229-2017

  43. Hoffmeister D, Zellmann S, Kindermann K, Pastoors A, Lang U, Bubenzer O, Weniger GC, Bareth G (2014) Geoarchaeological site documentation and analysis of 3D data derived by terrestrial laser scanning. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2:173–179. https://doi.org/10.5194/isprsannals-II-5-173-2014

  44. Lee SY, Majid Z, Setan H (2013) 3D data acquisition for indoor assets using terrestrial laser scanning. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2:221–226. https://doi.org/10.5194/isprsannals-II-2-W1-221-2013

  45. Babahajiani P, Fan L, Kamarainen JK, Gabbouj M (2016) Comprehensive automated 3D urban environment modelling using terrestrial laser scanning point cloud. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. 652–660 (2016). doi:https://doi.org/10.1109/CVPRW.2016.87

  46. Fey C, Rutzinger M, Wichmann V, Prager C, Bremer M, Zangerl C (2015) Deriving 3D displacement vectors from multi-temporal airborne laser scanning data for landslide activity analyses. GIScience Remote Sens. 52:437–461. https://doi.org/10.1080/15481603.2015.1045278

    Article  Google Scholar 

  47. Vauhkonen J (2015) Reconstruction, quantification, and visualization of forest canopy based on 3d triangulations of airborne laser scanning point data. ISPRS Ann Photogramm. Remote Sens Spat Inf Sci 2:255–261. https://doi.org/10.5194/isprsannals-II-3-W4-255-2015

  48. Majasalmi T, Korhonen L, Korpela I, Vauhkonen J (2017) Application of 3D triangulations of airborne laser scanning data to estimate boreal forest leaf area index. Int. J. Appl. Earth Obs. Geoinf. 59:53–62. https://doi.org/10.1016/j.jag.2017.02.022

    Article  Google Scholar 

  49. Weise T, Leibe B, Van Gool L (2007) Fast 3D scanning with automatic motion compensation. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2007.383291

  50. Pang X, Lau RWH, Song Z, Li Y, He S (2016) A Tool-Free Calibration Method for Turntable-Based 3D Scanning Systems. IEEE Comput. Graph. Appl. 36:52–61. https://doi.org/10.1109/MCG.2014.83

    Article  Google Scholar 

  51. Albarelli A, Cosmo L, Bergamasco F, Torsello A (2014) High-coverage 3D scanning through online structured light calibration. Proc Int Conf Pattern Recognit 4080–4085. https://doi.org/10.1109/ICPR.2014.699

  52. Cui Y, Schuon S, Thrun S, Stricker D, Theobalt C (2013) Algorithms for 3D shape scanning with a depth camera. IEEE Trans. Pattern Anal. Mach. Intell. 35:1039–1050. https://doi.org/10.1109/TPAMI.2012.190

    Article  Google Scholar 

  53. Allegra D, Gallo G, Inzerillo L, Lombardo M, Milotta FLM, Santagati C, Stanco F (2016) Low Cost Handheld 3D Scanning for Architectural Elements Acquisition. 10–15. https://doi.org/10.2312/stag.20161372

  54. Daneshmand M, Helmi A, Avots E, Noroozi F, Alisinanoglu F, Arslan HS, Gorbova J, Haamer RE, Ozcinar C, Anbarjafari G (2018) 3D Scanning: A Comprehensive Survey. 1–18

    Google Scholar 

  55. Dou M, Taylor J, Fuchs H, Fitzgibbon A, Izadi S (2015) 3D scanning deformable objects with a single RGBD sensor. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp 493–501. IEEE

    Google Scholar 

  56. Bylow E, Sturm J, Kerl C, Kahl F, Cremers D (2016) Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions. https://doi.org/10.15607/rss.2013.ix.035

  57. Chen T, Lensch HPA, Fuchs C, Seidel HP (2007) Polarization and phase-shifting for 3D scanning of translucent objects. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2007.383209

  58. Ma H, Wang D, Shi J, Tian J (2017) A wideband 45 degree polarized electrical scanning antenna array manufactured by 3D printing with metals. 2016 CIE Int Conf Radar, RADAR 2016. 3:4–6 (2017). https://doi.org/10.1109/RADAR.2016.8059418

  59. Aubreton O, Bajard A, Verney B, Truchetet F (2013) Infrared system for 3D scanning of metallic surfaces. Mach. Vis. Appl. 24:1513–1524. https://doi.org/10.1007/s00138-013-0487-z

    Article  Google Scholar 

  60. Fuciños M, López J, Pardo XM, Fdez-Vidal XR (2013) Fast Implementation of a New Radial Symmetry Measure for Photogrammetry. Presented at the (2013)

    Google Scholar 

  61. OpenMP https://www.openmp.org/

  62. Drosos V, Fidani S, Manesis C (2013) Use of photogrammetry and GIS in the survey of natural areas of special protection: case study of aesthetic forest Kouri Almyrou Magnisias. Presented at the August 5 2013

    Google Scholar 

  63. Jie Wang, Xiaohu Zhang, Hao Chen, Shaowen Ding: Relative pose measurement of Satellite and rocket based on photogrammetry. In: 2017 2nd International Conference on Image, Vision and Computing (ICIVC). pp. 1117–1122. IEEE (2017)

    Google Scholar 

  64. Dong, X., Zhang, Y., Liu, J., Hu, G.: A fisheye image barrel distortion correction method of the straight slope constraint. In: 2015 8th International Congress on Image and Signal Processing (CISP). pp. 173–177. IEEE (2015)

    Google Scholar 

  65. Lu C-P, Hager GD, Mjolsness E (2000) Fast and globally convergent pose estimation from video images. IEEE Trans. Pattern Anal. Mach. Intell. 22:610–622. https://doi.org/10.1109/34.862199

    Article  Google Scholar 

  66. Luhmann T, Fraser C, Maas HG (2016) Sensor modelling and camera calibration for close-range photogrammetry. ISPRS J. Photogramm. Remote Sens. 115:37–46. https://doi.org/10.1016/j.isprsjprs.2015.10.006

    Article  Google Scholar 

  67. Fraser CS (2013) Automatic Camera Calibration in Close Range Photogrammetry. Photogramm Eng Remote Sens 79:381–388. https://doi.org/10.14358/PERS.79.4.381

    Article  Google Scholar 

  68. López J, Fuciños M, Fdez-Vidal XR, Pardo XM (2013) Detection and matching of lines for close-range photogrammetry. Lect Notes Comput Sci (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 7887 LNCS, 732–739. https://doi.org/10.1007/978-3-642-38628-2_87

  69. Bright BC, Loudermilk EL, Pokswinski SM, Hudak AT, O’Brien JJ (2016) Introducing Close-Range Photogrammetry for Characterizing Forest Understory Plant Diversity and Surface Fuel Structure at Fine Scales. Can. J Remote Sens 42:460–472. https://doi.org/10.1080/07038992.2016.1229598

    Article  Google Scholar 

  70. Mayr A, Rutzinger M, Bremer M, Geitner C (2016) Mappping eroded areas on mountain grassland with terrestrial photogrammetry and objext-based image analysis. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:137–144. https://doi.org/10.5194/isprs-annals-III-5-137-2016

  71. Buffa, F., Pinna, A., Sanna, G (2016) A simulation tool assisting the design of a close range photogrammetry system for the sardinia radio telescope. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:113–120. https://doi.org/10.5194/isprs-annals-III-5-113-2016

  72. Han B, Endreny TA (2014) River surface water topography mapping at sub-millimeter resolution and precision with close range photogrammetry: Laboratory scale application. IEEE J Sel Top Appl Earth Obs Remote Sens 7:602–608. https://doi.org/10.1109/JSTARS.2014.2298452

  73. Singh SP, Jain K, Ravibabu Mandla V (2014) A newapproach towards image based virtual 3D city modeling by using close range photogrammetry. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2:329–337. https://doi.org/10.5194/isprsannals-II-5-329-2014

  74. Rottensteiner F, Sohn G, Gerke M, Wegner JD, Breitkopf U, Jung J (2014) Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS J Photogramm. Remote Sens. 93:256–271. https://doi.org/10.1016/j.isprsjprs.2013.10.004

    Article  Google Scholar 

  75. Nex F, Gerke M, Remondino F, Przybilla HJ, Bäumker M, Zurhorst A (2015) Isprs benchmark for multi-platform photogrammetry. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2:135–142. https://doi.org/10.5194/isprsannals-II-3-W4-135-2015

  76. Blomley R, Weinmann M (2017) Using Multi-scale features for the 3D semantic labeling of airborne laser scanning data. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4:43–50 (2017). https://doi.org/10.5194/isprs-annals-IV-2-W4-43-2017

  77. Sun Y, Zhao L, Huang S, Yan L, Dissanayake G (2014) L2-SIFT: SIFT feature extraction and matching for large images in large-scale aerial photogrammetry. ISPRS J. Photogramm. Remote Sens. 91:1–16. https://doi.org/10.1016/j.isprsjprs.2014.02.001

    Article  Google Scholar 

  78. Herlihy M, Luchangco V, Moir M, Scherer WN (2003) Software transactional memory for dynamic-sized data structures. In: Proceedings of the twenty-second annual symposium on Principles of distributed computing - PODC ’03. pp 92–101. ACM Press, New York, New York, USA

    Google Scholar 

  79. Cucci DA (2016) Accurate optical target pose determination for applications in aerial photogrammetry. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:257–262. https://doi.org/10.5194/isprs-annals-III-3-257-2016

  80. Lucet G (2013) 3D survey of pre-hispanic wall painting with high resolution photogrammetry. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2:191–196 (2013). https://doi.org/10.5194/isprsannals-II-5-W1-191-2013

  81. Murtiyoso A, Koehl M, Grussenmeyer P, Freville T (2017) Acquistion and processing protocols for UAV images: 3D Modelling of historical buildings using photogrammetry. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4:163–170. https://doi.org/10.5194/isprs-annals-IV-2-W2-163-2017

  82. Casella V, Franzini M (2016) Modelling steep surfaces by various configurations nadir and oblique photogrammetry. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:175–182. https://doi.org/10.5194/isprs-annals-III-1-175-2016

  83. Ley A, Hänsch R, Hellwich O (2017) Automatic building abstraction from aerial photogrammetry. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4:243–250. https://doi.org/10.5194/isprs-annals-IV-2-W4-243-2017

  84. Carvajal-Ramírez F, Agüera-Vega F, Martínez-Carricondo PJ (2016) Effects of image orientation and ground control points distribution on unmanned aerial vehicle photogrammetry projects on a road cut slope. J Appl Remote Sens 10:034004. https://doi.org/10.1117/1.JRS.10.034004

    Article  Google Scholar 

  85. Barlow J, Gilham J, Ibarra Cofrã I (2017) Kinematic analysis of sea cliff stability using UAV photogrammetry. Int J Remote Sens 38:2464–2479. https://doi.org/10.1080/01431161.2016.1275061

    Article  Google Scholar 

  86. Gonçalves JA, Henriques R (2015) UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J Photogramm Remote Sens 104:101–111. https://doi.org/10.1016/j.isprsjprs.2015.02.009

    Article  Google Scholar 

  87. Scarelli FM, Sistilli F, Fabbri S, Cantelli L, Barboza EG, Gabbianelli G (2017) Seasonal dune and beach monitoring using photogrammetry from UAV surveys to apply in the ICZM on the Ravenna coast (Emilia-Romagna, Italy). Remote Sens. Appl. Soc. Environ. 7:27–39. https://doi.org/10.1016/j.rsase.2017.06.003

    Article  Google Scholar 

  88. Amrullah C, Suwardhi D, Meilano I (2016) Product accuracy effect of oblique and vertical non-metric digital camera utilization in UAV-Photogrammetry to determine fault plane. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:41–48 (2016). https://doi.org/10.5194/isprs-annals-III-6-41-2016

  89. Zhang J, Wang X (2013) Digital photogrammetry of Chinese early aerial photo and application in morphotectonics mapping of Tanlu active fault zone. Int Geosci Remote Sens Symp 2924–2926 (2013). https://doi.org/10.1109/IGARSS.2013.6723437

  90. Duan Y, Yan L, Zhong Y, Yao J (2014) A new method of improving height accuracy of airborne photogrammetry using a multi-camera system. Int. Geosci. Remote Sens. Symp. 1:2019–2022. https://doi.org/10.1109/IGARSS.2014.6946859

    Article  Google Scholar 

  91. Sánchez-García E, Balaguer-Beser A, Pardo-Pascual JE (2017) C-Pro: A coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS J Photogramm Remote Sens 128:255–273. https://doi.org/10.1016/j.isprsjprs.2017.03.023

    Article  Google Scholar 

  92. Roncella R, Forlani G, Fornari M, Diotri F (2014) Landslide monitoring by fixed-base terrestrial stereo-photogrammetry. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2:297–304. https://doi.org/10.5194/isprsannals-II-5-297-2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Batra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batra, V., Kumar, V. (2021). Developments in Three-Dimensional Scanning Techniques and Scanners. In: Das, L.M., Kumar, N., Lather, R.S., Bhatia, P. (eds) Emerging Trends in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-8304-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8304-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8303-2

  • Online ISBN: 978-981-15-8304-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics