Skip to main content

Design and Analysis of an Air-Purifier Using Cyclone Separator for Industries

  • Conference paper
  • First Online:
Emerging Trends in Mechanical Engineering

Abstract

Controlling air pollution is important for healthy well-being of humans and nature as a whole. The presence of particulate matter in air is a serious matter of concern as it causes several health hazards. One of the most cost effective and efficient methods to separate particulate matter is by using cyclone separator. Cyclone separator is a device without any moving parts having tangential inlet velocity of gas stream transformed into a compact vortex or spiral flow downward between walls of gas discharge outlet and body of cyclone. The centrifugal force resulted by vortex or spiral creation leads to coarse particulate separation of particulate matter (24–30 μm) from the polluted air. This paper presents the design of a 2D-2D cyclone separator using Lapple mathematical model. Tangential inlet velocity and barrel diameter of cyclone separator are some of the important factors which collection efficiency depends on. Optimum barrel diameter and inlet velocity for highest collection efficiency were found by numerical analysis using Lapple model, in which former parameter was made fixed and latter changed and vice versa. The iteration was further carried out on four particles of different densities like manure dust, Arizona test dust, fly ash, and micro-alumina. Collection efficiencies of cyclone separator were determined for the selected particles above mentioned. It was observed that the collection efficiency reached a maximum after a size range (24–40 μm) of particles. The theoretical results obtained were verified with the results obtained in CFD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang L, Parnell Jr CB, Shaw BW, A study of the cyclone fractional

    Google Scholar 

  2. Efficiency Curves. Agric Eng Int: CIGR J

    Google Scholar 

  3. Scientific Research and Development (2002) Manuscript BC 02 002, vol 4

    Google Scholar 

  4. Liden G, Gudmundsson A (1997) Semi-empirical modelling to generalise the dependence of cyclone collection efficiency on operating conditions and cyclone design. J Aerosol Sci 28(5):853–874. https://doi.org/10.1016/S0021-8502(96)00479-X

  5. Dirgo J, Leith, D (2007) Cyclone collection efficiency: comparison of experimental results with theoretical predictions. Aerosol Sci Technol 4:401–415. https://doi.org/10.1080/02786828508959066

  6. Taiwo MI, Namad MA, James BM (2016) Design and analysis of cyclone dust separator. Am J Eng Res 5(4):130–134

    Google Scholar 

  7. Wang L, Parnell CB, Shaw BW, Lacey RE (2003) Analysis of cyclone collection efficiency. Am Soc Agric Biol Eng. https://doi.org/10.13031/2013.15040

  8. Bashir K (2015) Design and fabrication of cyclone separator. Doctoral dissertation, Thesis, China University of Petroleum. https://doi.org/10.13140/RG.2.2.20727.83368

  9. Sakura GB, Leung AY Experimental study of particle collection efficiency of cylindrical inlet type cyclone separator. Int J Environ Sci Dev 6(3) (2015). https://doi.org/10.7763/IJESD.2015.V6.581

  10. Zhu Z, Na Y, Lu Q (2008) Pressure drop in cyclone separator at high pressure. J Therm Sci 17(3):275–280. https://doi.org/10.1007/s11630-008-0275-7

    Article  Google Scholar 

  11. Marinuc M, Rus F (2011) The effect of particle size and input velocity on cyclone separation process. Bulletin of the Transilvania University of Brasov. Forestry, Wood Industry, Agricultural Food Engineering. Series II, vol 4(2), p 117

    Google Scholar 

  12. Verma RS, Sen PK, Bohidar SK (2015) Study of design of cyclone separator under collection efficiency and air density effect. Int J Adv Res Sci Eng 4(Special Issue 01)

    Google Scholar 

  13. Wang L, Buser MD, Parnell CB, Shaw BW (2003) Effect of air density on cyclone performance and system design. Trans ASAE 46(4):1193–1201. https://doi.org/10.13031/2013.13957

  14. Faulkner WB, Buser MD, Whitelock DP, Shaw BW (2007) Effects of cyclone diameter on performance of 1D3D cyclones: collection efficiency. Trans Am Soc Agric Biol Eng 50(3):1053–1059. https://doi.org/10.13031/2013.23146

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Ananda Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishnan, R.B.A., Vijayakumar, S., Krishnan, K.H., Jyothi, S.N. (2021). Design and Analysis of an Air-Purifier Using Cyclone Separator for Industries. In: Das, L.M., Kumar, N., Lather, R.S., Bhatia, P. (eds) Emerging Trends in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-8304-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8304-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8303-2

  • Online ISBN: 978-981-15-8304-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics