Skip to main content

A Low-Power Hara Inductor-Based Differential Ring Voltage-Controlled Oscillator

  • Conference paper
  • First Online:
Recent Innovations in Computing (ICRIC 2020)

Abstract

The most important component needed for all wireless and communication systems is the voltage-controlled oscillator (VCO). In this paper, a four-stage low-power differential ring voltage-controlled oscillator (DRVCO) is presented. The proposed DRVCO is designed using new differential delay cell with dual delay path and Hara inductor to obtain a high frequency VCO with low-power consumption. Results have been obtained at supply voltage of 1.8 V using 0.18 µm TSMC complementary metal oxide semiconductor (CMOS) process. The tuning range for the proposed VCO varies from 4.6 to 5.5 GHz. This low-power VCO has a power consumption of about 5–10 mW over a control voltage variation of 0.1–1.0 V. The proposed VCO circuit at an offset frequency of 1 MHz achieves a phase noise of −67.9966 dBc/Hz. The figure of merit of proposed circuit is −135 dBc/Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tiebout, M.: Low power low phase noise differentially tuned quadrature VCO design in standard CMOS. IEEE J. Solid-State Circ. 36(7), 1018–1024 (2001)

    Article  Google Scholar 

  2. Lee, T.H., Hajimiri, A.: Oscillator phase noise: a tutorial. IEEE J. Solid-State Circ. 35(3), 326–336 (2000)

    Google Scholar 

  3. McCorquodale, M.S., Gupta, V.: A history of the development of CMOS oscillators: the dark horse in frequency control. In: Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, pp. 437–442 (2011)

    Google Scholar 

  4. Razavi, B.: Challenges in the design of frequency synthesizers for wireless applications. In: Proceedings of IEEE CICC 97—Custom Integrated Circuits Conference, pp. 1–8 (1997)

    Google Scholar 

  5. Singh, V., Arya, S.K., Kumar, M.: Gm-boosted current-reuse inductive-peaking common source LNA for 3.1–10.6 GHz UWB wireless applications in 32 nm CMOS. Analog Integr. Circ. Sig. Process. 97(2), 351–363 (2018)

    Google Scholar 

  6. Singh, P.K., Bhargava, B.K., Paprzycki, M., Kaushal, N.C., Hong, W.C.: Handbook of wireless sensor networks: issues and challenges in current scenario’s. In: Advances in Intelligent Systems and Computing, vol. 1132, pp. 155–437. Springer, Cham, Switzerland (2020)

    Google Scholar 

  7. Singh, V., Arya, S.K., Kumar, M.: A 5.7 mw, UWB LNA for wireless applications using noise canceling technique in 90 nm CMOS. Frequenz 74(1–2), 83–93 (2020)

    Google Scholar 

  8. Park, C.H., Kim, O., Kim, B.: A 1.8-GHz self-calibrated phase locked loop with precise I/Q matching. IEEE J. Solid-State Circ. 36(5), 777–783 (2001)

    Google Scholar 

  9. Savoj, J., Razavi, B.: A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector. IEEE J. Solid-State Circ. 36(5), 761–767 (2001)

    Article  Google Scholar 

  10. Weigandt, T.C., Kim, B.K., Gray, P.: Analysis of timing jitter in CMOS ring oscillators. In: Proceedings of IEEE International Symposium on Circuits and Systems—ISCAS, pp. 27–30 (1994)

    Google Scholar 

  11. Gardner, F.M.: Phaselock Techniques, 2nd edn. Wiley, New York (1979)

    Google Scholar 

  12. Vaucher, C.S., Leenaerts, D., Tang J.V.D.: Circuit Design for RF Transceivers USA, pp. 185–238. Kluwer Academic Publishers (2003)

    Google Scholar 

  13. Abidi, A.A.: Phase noise and jitter in CMOS ring oscillators. IEEE J. Solid-State Circ. 41(8), (2006)

    Google Scholar 

  14. Mandal, M.K., Sarkar, B.C.: Ring oscillators: characteristics and applications. Indian J. Pure Appl. Phys. 48, 136–145 (2010)

    Google Scholar 

  15. Fillaud, M., Barthelemy, H.: Design of a wide tuning range VCO using an active inductor. In: Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, pp. 13–16 (2008)

    Google Scholar 

  16. Yuan, F.: CMOS Active Inductors and Transformers: Principle, Implementation, and Applications. Springer, Toronto, Ontario, Canada (2008)

    Google Scholar 

  17. Laskar, J., Mukhopadhyay, R., Lee, C.H.: Active inductor-based oscillator: a promising candidate for low-cost low-power multi-standard signal generation. In: Proceedings of IEEE Radio Wireless Symposium, pp. 31–34 (2007)

    Google Scholar 

  18. Lu, L.H., Hsieh, H.H., Liao, Y.T.: A wide tuning-range CMOS VCO with a differential tunable active inductor. IEEE Trans. Microw. Theory Tech. 54(9), 3462–3468 (2006)

    Google Scholar 

  19. Hara, S., Tokumitsu, T., Tanaka, T., Aikawa, M.: Broadband monolithic microwave active inductor and its application to miniaturized wideband amplifiers. IEEE Trans. Microw. Theory Appl. 36(12), 1920–1924 (1988)

    Article  Google Scholar 

  20. Lingala, S., Pokharel, R.K., Tomar, A., Kanaya, H., Yoshida, K.: A wide tuning range –163 FOM CMOS quadrature ring oscillator for inductorless reconfigurable PLL. In: International Symposium on Signals, Systems and Electronics (ISSSE2010), pp. 1–4 (2010)

    Google Scholar 

  21. Tao, R., Berroth, M.: The design of 5 GHz voltage controlled ring oscillator using source capacitively coupled current amplifier. In: IEEE MTTS International Microwave Symposium Digest A, pp. 109–A112 (2003)

    Google Scholar 

  22. Rezayee, A., Martin, K.: A coupled two-stage ring oscillator. In: IEEE Midwest Symposium on Circuits and Systems, pp. 878–881 (2011)

    Google Scholar 

  23. Zhang, C., Li, Z., Fang, J., Zhao, J., Guo, Y., Chen, J.: A novel high-speed CMOS fully-differential ring VCO. In: IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (2014)

    Google Scholar 

  24. Wenhua, Z., Hvolgaard, J.M., Larsen, T.: A 0.18 µm CMOS low power ring VCO with 1 GHz tuning range for 3–5 GHz FM-UWB applications. In: IEEE 10th International Conference Communication Systems, pp. 1–5 (2006)

    Google Scholar 

  25. Mehra, R., Kumar, V., Islam, A.: Floating active inductor based Class-C VCO with 8 digitally tuned sub-bands. AEU Int. J. Electron. Commun. 83, 1–10 (2018)

    Article  Google Scholar 

  26. Kumar, M.: Voltage-controlled oscillator design using MOS varactor. J. Inst. Eng. (India) Ser. B (2019)

    Google Scholar 

  27. Park, C.H., Kim, B.: A low-noise 900-MHz VCO in 0.6-µm CMOS. IEEE J. Solid-State Circ. 34(5), 586–591 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misbah Manzoor Kiloo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiloo, M.M., Singh, V., Gupta, M. (2021). A Low-Power Hara Inductor-Based Differential Ring Voltage-Controlled Oscillator. In: Singh, P.K., Singh, Y., Kolekar, M.H., Kar, A.K., Chhabra, J.K., Sen, A. (eds) Recent Innovations in Computing. ICRIC 2020. Lecture Notes in Electrical Engineering, vol 701. Springer, Singapore. https://doi.org/10.1007/978-981-15-8297-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8297-4_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8296-7

  • Online ISBN: 978-981-15-8297-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics