Skip to main content

High-Throughput Phenotyping Methods for Economic Traits and Designer Plant Types as Tools to Support Modern Breeding Efforts

Abstract

Breeding is evolving toward a much closer integration of high-throughput phenotyping (HTP) tools and technologies, which can target extremely precise measurements of very specific traits. Sorghum breeding is not alien to this evolution, which of course implies majors shifts in how breeding is conducted. First, it implies that breeders include trait assessment to the traditional yield and agronomic evaluation, which implies also that breeding programs open up to new/other disciplines. Second and reversely, it also implies that these new/other disciplines think and conceive their own activities/orientations from the viewpoint of how these could fit into a breeding program. In this paper, we have tried to pave the way of how this evolution could successfully take place. The paper starts with a reflection on the notion of breeding product profile, which is where breeders and other disciplines define the contours of the cultivars they intend to develop, as a product, where end users (households, consumers, farmers, market) have a key input in its intended shape. Then the paper explores four domains in which HTP is currently being integrated in the sorghum breeding process: (1) staygreen and transpiration restriction under high VPD, (2) nodal root angle and depth, (3) mineral grain content (Fe, Zn), and (4) stover and grain quality traits. In each part, we explain the value of the trait and why it is considered by breeders; the HTP method that was developed to phenotype-related traits, in partic3ular how its development took into consideration breeding aspects (cost, throughput, simplicity); and finally how these traits are currently being integrated in the breeding program. The last part of the paper explores several other avenues of technologies that, although not yet routinely implemented, could bring about a major benefit to the breeding program’s efforts to increase the rate of genetic gains. Here, we introduce the use of drone imaging to tackle trial quality and pinpoint plot heterogeneity, the integration of quality analysis into the assessment of agronomic traits in the field, and the use of X-ray spectroscopy to assess grain color, shape, and architecture.

Keywords

  • Drone
  • High-throughput phenotyping
  • Image analysis
  • Remote sensing
  • Root angle
  • Root depth
  • Stover quality traits
  • Transpiration efficiency
  • Vapor pressure deficit
  • Water use

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   149.79
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   197.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   197.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Fig. 1
Fig. 2

References

  • Altangerel N, Walker JW, Mayagoitia P, Bailey DW, Estell RE, Scully O (2017) Comparison of near infrared reflectance spectroscopy and Raman spectroscopy for predicting botanical composition of cattle diets. Rangel Ecol Manage 70:81–786

    CrossRef  Google Scholar 

  • Anonymous (2004) Vitamin and mineral deficiency. A global progress report. United Nations Children’s Fund (UNICEF), New York, 43 pp

    Google Scholar 

  • Ashok Kumar A, Reddy BVS, Ramaiah B, Sahrawat KL, Pfeiffer WH (2012) Genetic variability and character association for grain iron and zinc contents in sorghum germplasm accessions and commercial cultivars. Eur J Plant Sci Biotech 6(1):66–70

    Google Scholar 

  • Ashok Kumar A, Anuradha K, Ramaiah B (2013a) Increasing grain Fe and Zn concentration in sorghum: progress and way forward. SAT eJournal 11:1–5

    Google Scholar 

  • Ashok Kumar A, Reddy BVS, Ramaiah B, Sahrawat KL, Pfeiffer WH (2013b) Gene effects and heterosis for grain iron and zinc concentration in sorghum [Sorghum bicolor (L.) Moench]. Field Crop Res 146:86–95

    CrossRef  Google Scholar 

  • Ashok KA, Anuradha K, Ramaiah B, Frederick R, Virk P, Peiffer W, Stefania G (2015) Recent advances in sorghum biofortification research. Plant Breed Rev 39:89–124

    Google Scholar 

  • Asrat S, Yesuf M, Carlsson F, Wale E (2010) Farmers’ preferences for crop variety traits: lessons for on-farm conservation and technology adoption. Ecol Econ 69:2394–2401

    CrossRef  Google Scholar 

  • Berger B, Parent B, Tester M (2010) High-throughput shoot imaging to study drought responses. J Exp Bot 61:3519–3528

    CrossRef  CAS  PubMed  Google Scholar 

  • Bluemmel M, Deshpande S, Kholova J, Vadez V (2015) Introgression of staygreen QLT’s for concomitant improvement of food and fodder traits in Sorghum bicolor. Field Crops Res 180:228–237

    CrossRef  Google Scholar 

  • Blummel M, Parthasarathy R (2006) Economic value of sorghum stover traded as fodder for urban and peri-urban dairy production in Hyderabad, India. Internat Sorghum Pearl Millet Newslet 47:97–100

    Google Scholar 

  • Blümmel M, Zerbini E, Reddy BVS, Hash CT, Bidinger F, Khan AA (2003) Improving the production and utilization of sorghum and pearl millet as livestock feed: progress towards dual-purpose genotypes. Field Crop Res 84:143–158

    CrossRef  Google Scholar 

  • Blümmel M, Samad M, Singh OP, Amede T (2009) Opportunities and limitations of food–feed crops for livestock feeding and implications for livestock–water productivity. Rangeland J 31:207–212

    CrossRef  Google Scholar 

  • Borrell AK, van Oosterom EJ, Mullet JE, George-Jaeggli B, Jordan DR, Klein PE, Hammer GL (2014) Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and enhancing water uptake patterns. New Phytol 203:817–830

    CrossRef  PubMed  Google Scholar 

  • Brichet N, Fournier C, Turc O, Strauss O, Artzet S, Pradal C, Welcker C, Tardieu F, Cabrera-Bosquet L (2017) A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform. Plant Methods 13:96. https://doi.org/10.1186/s13007-017-0246-7

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F (2016) High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol 212:269–281

    CrossRef  CAS  PubMed  Google Scholar 

  • Chapuis R, Delluc C, Debeuf R, Tardieu F, Welcker C (2012) Resiliences to water deficit in a phenotyping platform and in the field: how related are they in maize? Eur J Agron 42:59–67

    CrossRef  Google Scholar 

  • Chaugule A, Mali SN (2017) A new method using feature extraction for identifying paddy rice species for quality seed selection. Imaging Sci J 65(4):226–238. https://doi.org/10.1080/13682199.2017.1317901

    CrossRef  Google Scholar 

  • Chenu K, van Oosterom EJ, McLean G, Deifel KS, Fletcher A, Geetika G, Tirfessa A, Mace ES, Jordan DR, Sulman R, Hammer GL (2018) Integrating modelling and phenotyping approaches to identify and screen complex traits: transpiration efficiency in cereals. J Exp Bot 69:3181–3194

    CrossRef  CAS  PubMed  Google Scholar 

  • Choudhary S, Mutava RN, Shekoofa A, Sinclair TR, Vara PPV (2013) Is the stay-green trait in sorghum a result of transpiration sensitivity to either soil drying or vapor pressure deficit? Crop Sci 53:2129–2134

    CrossRef  Google Scholar 

  • Deery D, Jimenez-Berni J, Jones H, Sirault X, Furbank R (2014) Proximal remote sensing buggies and potential applications for field-based phenotyping. Agronomy 4(3):349–379

    CrossRef  Google Scholar 

  • Fletcher AL, Sinclair TR, Allen LH (2007) Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean. Environ Exp Bot 61:145–151

    CrossRef  CAS  Google Scholar 

  • Gaddameedi A, Ravi KKT, Mohammed R, Phuke RM, Sadaiah K, Kavi KPK, Ashok KA (2018) Inheritance studies on grain Fe and Zn concentration and agronomic traits in sorghum [Sorghum bicolor (L.) Moench]. J Cereal Sci 83:252–258

    CrossRef  CAS  Google Scholar 

  • Gholipoor M, Vara PPV, Mutava RN, Sinclair TR (2010) Genetic variability of transpiration response to vapor pressure deficit among sorghum genotypes. Field Crop Res 119:85–90

    CrossRef  Google Scholar 

  • Guindo D, Davrieux F, Teme N, Vaksmann M, Doumbia M, Fliedel G, Bastianelli D, Verdeil J-L, Mestres C, Kouressy M, Courtois B, Rami J-F (2016) Pericarp thickness of sorghum whole grain is accurately predicted by NIRS and can affect the prediction of other grain quality parameters. J Cereal Sci 69:218–227

    CrossRef  Google Scholar 

  • Guo W, Zheng B, Potgieter AB, Diot J, Watanabe K, Noshita K, Jordan DR, Wang X, Watson J, Ninomiya S, Chapman SC (2018) Aerial imagery analysis – quantifying appearance and number of sorghum heads for applications in breeding and agronomy. Front Plant Sci 9:1544. https://doi.org/10.3389/fpls.2018.01544

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hammer GL, Dong ZS, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt? Crop Sci 49:299–312

    CrossRef  Google Scholar 

  • Hochholdinger F, Katrin W, Sauer M, Dembonsky D (2004) Genetic dissection of root formation in maize reveals root-type specific development programmes. Ann Bot 93:359–368

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Houk RS (1986) Mass spectrometry of inductively coupled plasmas. Anal Chem 58(1):97A–105A

    CrossRef  CAS  Google Scholar 

  • Hund A, Trachsel S, Stamp P (2009) Growth of axile and lateral roots of maize. I: development of a phenotyping platform. Plant Soil 325:335–349

    CrossRef  CAS  Google Scholar 

  • Iwata H, Ebana K, Uga Y, Hayashi T (2015) Genomic prediction of biological shape: elliptic fourier analysis and kernel partial least squares (PLS) regression applied to grain shape prediction in rice (Oryza sativa L.). PLoS One 10(3):e0120610. https://doi.org/10.1371/journal.pone.0120610

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi DC, Singh V, Hunt C, Mace E, van Oosterom E, Sulman R, Jordan D, Hammer G (2017) Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum. Plant Methods 13:56

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kholová J, Hash CT, Kumar LK, Yadav RS, Kocŏvá M, Vadez V (2010) Terminal drought tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapor pressure deficit. J Exp Bot 61:1431–1440

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Kholová J, Nepolean T, Hash CT, Supriya A, Rajaram V, Senthilvel S, Kakkera A, Yadav RS, Vadez V (2012) Water saving traits co-map with a major terminal drought tolerance quantitative trait locus in pearl millet (Pennisetum glaucum (L.) R. Br.). Mol Breed 30(3):1337–1353. https://doi.org/10.1007/s11032-012-9720-0

    CrossRef  Google Scholar 

  • Kholová J, Tharanya M, Kaliamoorthy S, Malayee S, Baddam R, Hammer GL, McLean G, Deshpande S, Hash CT, Craufurd PQ, Vadez V (2014) Modelling the effect of plant water use traits on yield and stay-green expression in sorghum. Funct Plant Biol 41(10–11):1019–1034

    CrossRef  PubMed  CAS  Google Scholar 

  • Kotla A, Phuke R, Hariprasanna K, Rathore SP, Radhika A, Hash CT, Reddy BVS, Patil JV, Jabeen F, Shashikanth D, Pagde LS, Deshpande SP, Ashok KA (2016) Identification of QTLs and underlying candidate genes controlling grain Fe and Zn concentration in sorghum [Sorghum bicolor (L). Moench]. In: Plant and animal genome conference XXIV, January 8–13, 2016, San Diego, CA.5A

    Google Scholar 

  • Lobet G, Pages L, Draye X (2011) A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol 157:29–39

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mace E, Singh V, van Oosterom E, Hammer G, Hunt C, Jordan D (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genetics 124:97–109

    CrossRef  CAS  Google Scholar 

  • Manschadi AM, Hammer GL, Christopher JT, deVoil P (2008) Genotypic variation in seedling root architectural traits and implications for drought adaptation in wheat (Triticum aestivum L.). Plant Soil 303:115–129

    CrossRef  CAS  Google Scholar 

  • Messina CD, Sinclair TR, Hammer GL, Curan D, Thompson J, Oler Z, Gho C, Cooper M (2015) Limited-transpiration trait may increase maize drought tolerance in the US corn belt. Agron J 107:1978–1986

    CrossRef  CAS  Google Scholar 

  • Persley GJ, Anthony VM (2017) Executive summary. In: Persley GJ, Anthony VM (eds) The business of plant breeding: market-led approaches to plant variety design in Africa. CAB International, Wallingford

    CrossRef  Google Scholar 

  • Potgieter AB, George-Jaeggli B, Chapman SC, Laws K, Suárez Cadavid LA, Wixted J, Watson J, Eldridge M, Jordan DR, Hammer GL (2017) Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines. Front Plant Sci 8:1532. https://doi.org/10.3389/fpls.2017.01532

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ratnakumar P, Vadez V, Nigam SN, Krishnamurthy L (2009) Assessment of transpiration efficiency in peanut (Arachis hypogaea L.) under drought using a lysimetric system. Plant Biol 11:124–130

    CrossRef  CAS  PubMed  Google Scholar 

  • Reddy PS, Reddy BVS, Ashok KA, Ramesh S, Sahrawat KL, Rao PV (2010) Association of grain Fe and Zn contents with agronomic traits in sorghum. Indian J Plant Genet Resour 23:280–284

    Google Scholar 

  • Rhodes DH, Hoffmann L, Rooney WL, Herald TJ, Bean S, Boyles R, Brenton ZW, Kresovitch S (2017) Genetic architecture of kernel composition in global sorghum germplasm. BMC Genom 18:15. https://doi.org/10.1186/s12864-016-3403-x

    CrossRef  CAS  Google Scholar 

  • Sinclair TR, Hammer GL, van Oosterom EJ (2005) Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct Plant Biol 32:945–952

    CrossRef  PubMed  Google Scholar 

  • Singh V, van Oosterom EJ, Jordan DR, Messina CD, Cooper M, Hammer GL (2010) Morphological and architectural development of root systems in sorghum and maize. Plant Soil 333:287–299

    CrossRef  CAS  Google Scholar 

  • Singh V, van Oosterom EJ, Jordan DR, Hunt CH, Hammer GL (2011) Genetic variability and control of nodal root angle in sorghum. Crop Sci 51:2011–2020

    CrossRef  Google Scholar 

  • Singh V, van Oosterom EJ, Jordan DR, Hammer GL (2012) Genetic control of nodal root angle in sorghum and its implications on water extraction. Eur J Agron 42:3–10

    CrossRef  Google Scholar 

  • Slingerland MA, Traore K, Kayodé APP, Mitchikpe CES (2006) Fighting Fe deficiency malnutrition in West Africa: an interdisciplinary programme on a food chain approach. NJAS-Wageningen J Life Sci 53:253–279

    CrossRef  Google Scholar 

  • Stangoulis J (2010) A technical aspects of zinc and iron analysis in biofortification of the staple food crops, wheat and rice. In: 19th world congress of soil science, soil solutions for a changing world 1–6 Aug 2010, Brisbane, Australia. Publ. on DVD, 42-44. https://assets.publishing.service.gov.uk/ media/57a08affe5274a31e00008da/Stangoulis-2499.pdf

  • Tharanya M, Kholova J, Sivasakthi K, Seghal D, Hash CT, Raj B, Srivastava RK, Baddam R, Thirunalasundari T, Yadav R, Vadez V (2018) Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum L.R.Br.). Theor Appl Genet 131(7):1509–1529. https://doi.org/10.1007/s00122-018-3094-6

    CrossRef  CAS  PubMed  Google Scholar 

  • Vadez V, Rao S, Kholova J, Krishnamurthy L, Kashiwagi J, Ratnakumar P, Sharma KK, Bhatnagar-Mathur P, Basu PS (2008) Roots research for legume tolerance to drought: quo vadis? J Food Legumes 21:77–85

    Google Scholar 

  • Vadez V, Deshpande SP, Kholova J, Hammer GL, Borrell AK, Talwar HS, Hash CT (2011) Stay-green quantitative trait loci’s effects on water extraction, transpiration efficiency and seed yield depend on recipient parent background. Funct Plant Biol 38:553–566

    CrossRef  PubMed  Google Scholar 

  • Vadez V, Kholova J, Yadav RS, Hash CT (2013a) Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum (L.) R. Br.) are critical for grain yield under terminal drought. Plant Soil 371(1):447–462. https://doi.org/10.1007/s11104-013-1706-0

    CrossRef  CAS  Google Scholar 

  • Vadez V, Kholova J, Zaman-Allah M, Belko N (2013b) Water: the most important ‘molecular’ component of water stress tolerance research. Funct Plant Biol 40:1310–1322. https://doi.org/10.1071/FP13149

    CrossRef  PubMed  Google Scholar 

  • Vadez V, Kholova J, Medina S, Aparna K, Anderberg H (2014) Transpiration efficiency: new insights into an old story. J Exp Bot 65:6141–6153. https://doi.org/10.1093/jxb/eru040

    CrossRef  CAS  PubMed  Google Scholar 

  • Vadez V, Kholova J, Hummel G, Zhokhavets U, Gupta SK, Hash CT (2015) Leasy scan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. J Exp Bot 66(18):5581–5593. https://doi.org/10.1093/jxb/erv251

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • van Oosterom EJ, Borrell AK, Deifel KS, Hammer GL (2011) Does increased leaf appearance rate enhance adaptation to postanthesis drought stress in sorghum? Crop Sci 51:2728–2740

    CrossRef  Google Scholar 

  • Yang Z, Hammer G, van Oosterom E, Rochas D, Deifel K (2010) Effects of pot size on growth of maize and sorghum plants. In: Proceeding of 1st Australian summer grains conference, Gold Coast, Australia, 21–24 June 2010. Canberra, Australia: Grains Research and Development Corporation. http://pandora.nla.gov.au/pan/133001/20120416-1354/www.grdc.com.au/uploads/documents/2010ASGCEditedPapersPDF/Yang_Pot Size_edited_paper.pdf

  • Yin CB, Li HH, Li SS, Xu LD, Zhao ZG, Wang JK (2015) Genetic dissection on rice grain shape by the two-dimensional image analysis in one japonica × indica population consisting of recombinant inbred lines. Theor Appl Genet 128:1969–1986. https://doi.org/10.1007/s00122-015-2560-7

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct Plant Biol 38:270–281

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vadez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vadez, V., van Oosterom, E., Singh, V., Blümmel, M., Are, A.K. (2020). High-Throughput Phenotyping Methods for Economic Traits and Designer Plant Types as Tools to Support Modern Breeding Efforts. In: Tonapi, V.A., Talwar, H.S., Are, A.K., Bhat, B.V., Reddy, C.R., Dalton, T.J. (eds) Sorghum in the 21st Century: Food – Fodder – Feed – Fuel for a Rapidly Changing World. Springer, Singapore. https://doi.org/10.1007/978-981-15-8249-3_10

Download citation