Skip to main content

Basic and Current Understanding of Articular Cartilage

  • Chapter
  • First Online:

Abstract

Articular cartilage has the unique structural and biomechanical properties to perform inherent functions including load-bearing, frictionless motion during several decades of life. It is composed of specialized cells, chondrocytes, and a largely abundant extracellular matrix which is regulated by various cytokines and growth factors. Articular cartilage shows a viscoelastic property to be able to respond differently to stress and loading. Articular cartilage injuries can be divided into three distinct types based on the depth of injury and each injury type has a different healing response and prognosis. However, intrinsic healing capacity is frequently insufficient for a full recovery. Differences in features between repair cartilage and native cartilage explain the deterioration of repair cartilage over time. Currently, regeneration of hyaline cartilage with biomechanical properties similar to native cartilage has been not achieved yet. Understanding the special architecture and biomechanics of articular cartilage will be the first step to fulfill these unmet needs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Buckwalter JA, Einhorn TA, Simon SR, American Academy of Orthopaedic S. Orthopaedic basic science: biology and biomechanics of the musculoskeletal system [S.l.]. American Academy of Orthopaedic Surgeons; 2004.

    Google Scholar 

  2. McAdams TR, Mithoefer K, Scopp JM, Mandelbaum BR. Articular Cartilage Injury in Athletes. Cartilage. 2010;1(3):165–79. https://doi.org/10.1177/1947603509360210.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O’Keefe RJ. Articular cartilage biology. J Am Acad Orthop Surg. 2003;11(6):421–30.

    Article  Google Scholar 

  4. Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage: An experimental investigation in the rabbit. J Bone Joint Surg Am. 1980;62(8):1232–51.

    Google Scholar 

  5. O’Driscoll SW, Salter RB. The induction of neochondrogenesis in free intra-articular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am. 1984;66(8):1248–57.

    Google Scholar 

  6. O’Driscoll SW, Salter RB. The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res. 1986(208):131–40.

    Google Scholar 

  7. Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86.

    CAS  PubMed  Google Scholar 

  8. Mow VC. Basic orthopaedic biomechanics. New York: Raven Press; 1991.

    Google Scholar 

  9. Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13(2):67–97.

    Article  CAS  Google Scholar 

  10. Zhu W, Iatridis JC, Hlibczuk V, Ratcliffe A, Mow VC. Determination of collagen-proteoglycan interactions in vitro. J Biomech. 1996;29(6):773–83.

    Article  CAS  Google Scholar 

  11. Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469(10):2706–15. https://doi.org/10.1007/s11999-011-1857-3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chadjichristos C, Ghayor C, Herrouin JF, Ala-Kokko L, Suske G, Pujol JP, et al. Down-regulation of human type II collagen gene expression by transforming growth factor-beta 1 (TGF-beta 1) in articular chondrocytes involves SP3/SP1 ratio. J Biol Chem. 2002;277(46):43903–17. https://doi.org/10.1074/jbc.M206111200.

    Article  CAS  PubMed  Google Scholar 

  13. Maroudas A, Bullough P, Swanson SA, Freeman MA. The permeability of articular cartilage. J Bone Joint Surg Br. 1968;50(1):166–77.

    Article  CAS  Google Scholar 

  14. DiSilvestro MR, Zhu Q, Wong M, Jurvelin JS, Suh JK. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I-Simultaneous prediction of reaction force and lateral displacement. J Biomech Eng. 2001;123(2):191–7.

    Article  CAS  Google Scholar 

  15. Roughley PJ, Lee ER. Cartilage proteoglycans: structure and potential functions. Microsc Res Tech. 1994;28(5):385–97. https://doi.org/10.1002/jemt.1070280505.

    Article  CAS  PubMed  Google Scholar 

  16. Bader DL, Salter DM, Chowdhury TT. Biomechanical influence of cartilage homeostasis in health and disease. Arthritis. 2011;2011:979032. https://doi.org/10.1155/2011/979032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13(4):456–60.

    Article  CAS  Google Scholar 

  18. Sahlstrom A, Johnell O, Redlund-Johnell I. The natural course of arthrosis of the knee. Clin Orthop Relat Res. 1997;340:152–7.

    Article  Google Scholar 

  19. Simonian PT, Sussmann PS, Wickiewicz TL, Paletta GA, Warren RF. Contact pressures at osteochondral donor sites in the knee. Am J Sports Med. 1998;26(4):491–4. https://doi.org/10.1177/03635465980260040201.

    Article  CAS  PubMed  Google Scholar 

  20. Cicuttini FM, Forbes A, Yuanyuan W, Rush G, Stuckey SL. Rate of knee cartilage loss after partial meniscectomy. J Rheumatol. 2002;29(9):1954–6.

    PubMed  Google Scholar 

  21. Mandelbaum BR, Browne JE, Fu F, Micheli L, Mosely JB Jr, Erggelet C, et al. Articular cartilage lesions of the knee. Am J Sports Med. 1998;26(6):853–61. https://doi.org/10.1177/03635465980260062201.

    Article  CAS  PubMed  Google Scholar 

  22. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am. 1982;64(3):460–6.

    Article  CAS  Google Scholar 

  23. Hunziker EB, Rosenberg LC. Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am. 1996;78(5):721–33.

    Article  CAS  Google Scholar 

  24. Kim HK, Moran ME, Salter RB. The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg Am. 1991;73(9):1301–15.

    Google Scholar 

  25. Lotz M. Cytokines in cartilage injury and repair. Clin Orthop Relat Res. 2001(391 Suppl):S108–15.

    Google Scholar 

  26. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75(4):532–53.

    Article  CAS  Google Scholar 

  27. Moskowitz RW, Altman RD, Buckwalter JA. Osteoarthritis Diagnosis and Medical/Surgical Management; 2015.

    Google Scholar 

  28. Bristol-Myers/Zimmer Orthopaedic S, Ewing JW, Raven P, editors. Articular cartilage and knee joint function: basic science and arthroscopy: Bristol-Myers/Zimmer Orthopaedic Symposium 1990; New York: Raven Press; 1990.

    Google Scholar 

  29. Simon SR. Orthopaedic basic science. Rosemont, Ill.: American Academy of Orthopaedic Surgeons; 1994.

    Google Scholar 

  30. D’Lima DD, Hashimoto S, Chen PC, Colwell CW, Jr., Lotz MK. Impact of mechanical trauma on matrix and cells. Clin Orthop Relat Res. 2001(391 Suppl):S90–9.

    Google Scholar 

  31. Sgaglione NA, Miniaci A, Gillogly SD, Carter TR. Update on advanced surgical techniques in the treatment of traumatic focal articular cartilage lesions in the knee. Arthroscopy. 2002;18(2 Suppl 1):9–32.

    Article  Google Scholar 

  32. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10(6):432–63. https://doi.org/10.1053/joca.2002.0801.

  33. Furukawa T, Eyre DR, Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am. 1980;62(1):79–89.

    Article  CAS  Google Scholar 

  34. Heath CA, Magari SR. Mini-review: Mechanical factors affecting cartilage regeneration in vitro. Biotechnol Bioeng. 1996;50(4):430–7. https://doi.org/10.1002/(SICI)1097-0290(19960520)50:4%3c430:AID-BIT10%3e3.0.CO;2-N.

    Article  CAS  PubMed  Google Scholar 

  35. Marijnissen AC, Lafeber FP, Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage 2002; 10:432–63. Osteoarthritis Cartilage. 2003;11(4):300–1. (author reply 2–4).

    Google Scholar 

  36. Beck A, Murphy DJ, Carey-Smith R, Wood DJ, Zheng MH. Treatment of articular cartilage defects with microfracture and autologous matrix-induced chondrogenesis leads to extensive subchondral bone cyst formation in a sheep model. Am J Sports Med. 2016;44(10):2629–43. https://doi.org/10.1177/0363546516652619.

    Article  PubMed  Google Scholar 

  37. Goyal D, Keyhani S, Lee EH, Hui JH. Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy. 2013;29(9):1579–88. https://doi.org/10.1016/j.arthro.2013.05.027.

    Article  PubMed  Google Scholar 

  38. DePalma AF, McKeever CD, Subin DK. Process of repair of articular cartilage demonstrated by histology and autoradiography with tritiated thymidine. Clin Orthop Relat Res. 1966;48:229–42.

    CAS  PubMed  Google Scholar 

  39. Aldegheri R, Trivella G, Saleh M. Articulated distraction of the hip: conservative surgery for arthritis in young patients. Clin Orthop Relat Res. 1994(301):94–101.

    Google Scholar 

  40. Van Valburg A, Van Roermund P, Lammens J, Van Melkebeek J, Verbout A, Lafeber E, et al. Can Ilizarov joint distraction delay the need for an arthrodesis of the ankle? A preliminary report. J Bone Joint Surg British. 1995;77(5):720–5.

    Article  Google Scholar 

  41. Odenbring S, Egund N, Lindstrand A, Lohmander LS, Willen H. Cartilage regeneration after proximal tibial osteotomy for medial gonarthrosis. An arthroscopic, roentgenographic, and histologic study. Clin Orthop Relat Res. 1992(277):210–6.

    Google Scholar 

  42. Schultz W, Gobel D. Articular cartilage regeneration of the knee joint after proximal tibial valgus osteotomy: a prospective study of different intra- and extra-articular operative techniques. Knee Surg Sports Traumatol Arthrosc. 1999;7(1):29–36. https://doi.org/10.1007/s001670050117.

    Article  CAS  PubMed  Google Scholar 

  43. Kumagai K, Akamatsu Y, Kobayashi H, Kusayama Y, Koshino T, Saito T. Factors affecting cartilage repair after medial opening-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2017;25(3):779–84. https://doi.org/10.1007/s00167-016-4096-z.

    Article  PubMed  Google Scholar 

  44. Panula HE, Helminen HJ, Kiviranta I. Slowly progressive osteoarthritis after tibial valgus osteotomy in young beagle dogs. Clin Orthop Relat Res. 1997;343:192–202.

    Article  Google Scholar 

  45. Kim KI, Seo MC, Song SJ, Bae DK, Kim DH, Lee SH. Change of chondral lesions and predictive factors after medial open-wedge high tibial osteotomy with a locked plate system. Am J Sports Med. 2017;45(7):1615–21. https://doi.org/10.1177/0363546517694864.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyuk-Soo Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, HS., Ro, D.H. (2021). Basic and Current Understanding of Articular Cartilage. In: Kim, J.G. (eds) Knee Arthroscopy. Springer, Singapore. https://doi.org/10.1007/978-981-15-8191-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8191-5_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8190-8

  • Online ISBN: 978-981-15-8191-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics