Skip to main content

Singlet Anticancer Therapy Through Epi-Weapons Histone Deacetylase Inhibitors and Its Shortcomings

  • Chapter
  • First Online:
Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy
  • 221 Accesses

Abstract

Appalling toxicities and chemoresistance associated with conventional anticancer therapies raise applicability related concerns (Howard et al. 2016). This emphasizes the dire need of novel therapies which are well tolerated and concurrently effective (Ganai et al. 2017; Guimaraes et al. 2013). Experimental evidences certify the implications of epigenetic mechanisms in tumour onset, progression and drug resistance (Hrabeta et al. 2014; Wilting and Dannenberg 2012). Histone deacetylases (HDACs), the metalloenzymes altering the chromatin topology through deacetylation of nucleosomal histones epigenetically silence genes involved in inhibition of tumour development (Ma et al. 2015). Anomalous expression of HDACs through alteration of cellular acetylation homeostasis causes transcriptional deregulation thereby making the conditions convenient for genesis and advancement of cancer (Li and Seto 2016; Saha and Pahan 2006). Thus fine tuning the gene expression by restoration of acetylation homeostasis through intervention of these HDACs has emerged as a promising strategy in epigenetic-based anticancer therapy. These small molecules, by name histone deacetylase inhibitors (HDACi), block the enzymatic function of HDACs through binding at their active site (Lakshmaiah et al. 2014; Lombardi et al. 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Gupta S (2008) The role of histone deacetylases in prostate cancer. Epigenetics 3:300–309

    PubMed  Google Scholar 

  • Agarwal N, McPherson JP, Bailey H, Gupta S, Werner TL, Reddy G, Bhat G, Bailey EB, Sharma S (2016) A phase I clinical trial of the effect of belinostat on the pharmacokinetics and pharmacodynamics of warfarin. Cancer Chemother Pharmacol 77:299–308

    CAS  PubMed  Google Scholar 

  • Al-Keilani M, Darweesh R (2017) Abstract 1188: sodium phenylbutyrate has an antineoplastic effect and enhances the cytotoxicity of 5-fluorouracil and irinotecan in colorectal cancer cell lines. Cancer Res 77:1188–1188

    Google Scholar 

  • Buckley MT, Yoon J, Yee H, Chiriboga L, Liebes L, Ara G, Qian X, Bajorin DF, Sun TT, Wu XR, Osman I (2007) The histone deacetylase inhibitor belinostat (PXD101) suppresses bladder cancer cell growth in vitro and in vivo. J Transl Med 5:49

    PubMed  PubMed Central  Google Scholar 

  • Buckwalter JM, Chan W, Shuman L, Wildermuth T, Ellis-Mohl J, Walter V, Warrick JI, Wu XR, Kaag M, Raman JD, DeGraff DJ (2019) Characterization of histone deacetylase expression within in vitro and in vivo bladder cancer model systems. Int J Mol Sci 20

    Google Scholar 

  • Byler TK, Leocadio D, Shapiro O, Bratslavsky G, Stodgell CJ, Wood RW, Messing EM, Reeder JE (2012) Valproic acid decreases urothelial cancer cell proliferation and induces thrombospondin-1 expression. BMC Urol 12:21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canes D, Chiang GJ, Billmeyer BR, Austin CA, Kosakowski M, Rieger-Christ KM, Libertino JA, Summerhayes IC (2005) Histone deacetylase inhibitors upregulate plakoglobin expression in bladder carcinoma cells and display antineoplastic activity in vitro and in vivo. Int J Cancer 113:841–848

    CAS  PubMed  Google Scholar 

  • Cao QF, Qian SB, Wang N, Zhang L, Wang WM, Shen HB (2015) TRPM2 mediates histone deacetylase inhibition-induced apoptosis in bladder cancer cells. Cancer Biother Radiopharm 30:87–93

    CAS  PubMed  Google Scholar 

  • Carbognani P, Spaggiari L, Romani A, Solli P, Corradi A, Cantoni AM, Petronini PG, Borghetti AF, Rusca M, Bobbio P (1998) Expression of human CD44v6 in non-small-cell lung cancer. Eur Surg Res 30:403–408

    CAS  PubMed  Google Scholar 

  • Castro NP, Rangel MC, Merchant AS, MacKinnon G, Cuttitta F, Salomon DS, Kim YS (2019) Sulforaphane suppresses the growth of triple-negative breast cancer stem-like cells in vitro and in vivo. Cancer Prev Res (Phila) 12:147–158

    CAS  Google Scholar 

  • Chalasani V, Chin JL, Izawa JI (2009) Histologic variants of urothelial bladder cancer and nonurothelial histology in bladder cancer. Can Urol Assoc J 3:S193–S198

    PubMed  PubMed Central  Google Scholar 

  • Chen C-L, Sung J, Cohen M, Chowdhury WH, Sachs MD, Li Y, Lakshmanan Y, Yung BYM, Lupold SE, Rodriguez R (2006) Valproic acid inhibits invasiveness in bladder cancer but not in prostate cancer cells. J Pharmacol Exp Ther 319:533–542

    CAS  PubMed  Google Scholar 

  • Chen C-Y, Yu Z-Y, Chuang Y-S, Huang R-M, Wang T-CV (2015) Sulforaphane attenuates EGFR signaling in NSCLC cells. J Biomed Sci 22:38

    PubMed  PubMed Central  Google Scholar 

  • Chen T, Gu C, Xue C, Yang T, Zhong Y, Liu S, Nie Y, Yang H (2017a) LncRNA-uc002mbe.2 interacting with hnRNPA2B1 mediates AKT deactivation and p21 up-regulation induced by trichostatin in liver cancer cells. Front Pharmacol 8:669–669

    PubMed  PubMed Central  Google Scholar 

  • Chen Y-J, Wang W-H, Wu W-Y, Hsu C-C, Wei L-R, Wang S-F, Hsu Y-W, Liaw C-C, Tsai W-C (2017b) Novel histone deacetylase inhibitor AR-42 exhibits antitumor activity in pancreatic cancer cells by affecting multiple biochemical pathways. PLoS One 12:e0183368

    PubMed  PubMed Central  Google Scholar 

  • Chen J, Li N, Liu B, Ling J, Yang W, Pang X, Li T (2020) Pracinostat (SB939), a histone deacetylase inhibitor, suppresses breast cancer metastasis and growth by inactivating the IL-6/STAT3 signalling pathways. Life Sci 248:117469

    CAS  PubMed  Google Scholar 

  • Chow N-H, Knowles M, Bivalacqua TJ (2012) Urothelial carcinoma. Adv Urol 2012:461370

    PubMed  PubMed Central  Google Scholar 

  • Cohen AL, Neumayer L, Boucher K, Factor RE, Shrestha G, Wade M, Lamb JG, Arbogast K, Piccolo SR, Riegert J, Schabel M, Bild AH, Werner TL (2017) Window-of-opportunity study of valproic acid in breast cancer testing a gene expression biomarker. JCO Precis Oncol:1–11

    Google Scholar 

  • Conteduca V, Sansonno D, Russi S, Dammacco F (2013) Precancerous colorectal lesions (review). Int J Oncol 43:973–984

    CAS  PubMed  Google Scholar 

  • Coradini D, Speranza A (2005) Histone deacetylase inhibitors for treatment of hepatocellular carcinoma. Acta Pharmacol Sin 26:1025–1033

    CAS  PubMed  Google Scholar 

  • Coradini D, Biffi A, Costa A, Pellizzaro C, Pirronello E, Di Fronzo G (1997) Effect of sodium butyrate on human breast cancer cell lines. Cell Prolif 30:149–159

    CAS  PubMed  Google Scholar 

  • Crisanti MC, Wallace AF, Kapoor V, Vandermeers F, Dowling ML, Pereira LP, Coleman K, Campling BG, Fridlender ZG, Kao GD, Albelda SM (2009) The HDAC inhibitor panobinostat (LBH589) inhibits mesothelioma and lung cancer cells in vitro and in vivo with particular efficacy for small cell lung cancer. Mol Cancer Ther 8:2221–2231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dadhania V, Czerniak B, Guo CC (2015) Adenocarcinoma of the urinary bladder. Am J Clin Exp Urol 3:51–63

    PubMed  PubMed Central  Google Scholar 

  • de Marinis F, Atmaca A, Tiseo M, Giuffreda L, Rossi A, Gebbia V, Antonio CD, Zotto LD, Al-Batran S-E, Marsoni S, Wolf M (2013) A phase II study of the histone deacetylase inhibitor panobinostat (LBH589) in pretreated patients with small-cell lung cancer. J Thorac Oncol 8:1091–1094

    PubMed  Google Scholar 

  • Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB (2019) Colorectal cancer. Lancet 394:1467–1480

    PubMed  Google Scholar 

  • Delavari A, Mardan F, Salimzadeh H, Bishehsari F, Khosravi P, Khanehzad M, Nasseri-Moghaddam S, Merat S, Ansari R, Vahedi H, Shahbazkhani B, Saberifiroozi M, Sotoudeh M, Malekzadeh R (2014) Characteristics of colorectal polyps and cancer; a retrospective review of colonoscopy data in Iran. Middle East J Dig Dis 6:144–150

    PubMed  PubMed Central  Google Scholar 

  • DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Jemal A, Siegel RL (2019) Breast cancer statistics, 2019. CA Cancer J Clin 69:438–451

    PubMed  Google Scholar 

  • Deskin B, Yin Q, Zhuang Y, Saito S, Shan B, Lasky JA (2020) Inhibition of HDAC6 attenuates tumor growth of non-small cell lung cancer. Transl Oncol 13:135–145

    PubMed  Google Scholar 

  • Dovzhanskiy DI, Hartwig W, Lazar NG, Schmidt A, Felix K, Straub BK, Hackert T, Krysko DV, Werner J (2012) Growth inhibition of pancreatic cancer by experimental treatment with 4-phenylbutyrate is associated with increased expression of Connexin 43. Oncol Res 20:103–111

    PubMed  Google Scholar 

  • Ediriweera MK, Tennekoon KH, Samarakoon SR (2019) Emerging role of histone deacetylase inhibitors as anti-breast-cancer agents. Drug Discov Today 24:685–702

    CAS  PubMed  Google Scholar 

  • Emanuele S, Lauricella M, Carlisi D, Vassallo B, D’Anneo A, Di Fazio P, Vento R, Tesoriere G (2007) SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis 12:1327–1338

    CAS  PubMed  Google Scholar 

  • Fortunati N, Marano F, Bandino A, Frairia R, Catalano MG, Boccuzzi G (2014) The pan-histone deacetylase inhibitor LBH589 (panobinostat) alters the invasive breast cancer cell phenotype. Int J Oncol 44:700–708

    CAS  PubMed  Google Scholar 

  • Ganai SA (2015) Strategy for enhancing the therapeutic efficacy of histone deacetylase inhibitor dacinostat: the novel paradigm to tackle monotonous cancer chemoresistance. Arch Pharm Res

    Google Scholar 

  • Ganai SA (2016a) Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance. Pharm Biol 54:1926–1935

    CAS  PubMed  Google Scholar 

  • Ganai SA (2016b) Histone deacetylase inhibitor sulforaphane: the phytochemical with vibrant activity against prostate cancer. Biomed Pharmacother 81:250–257

    CAS  PubMed  Google Scholar 

  • Ganai SA (2018) Designing isoform-selective inhibitors against classical HDACs for effective anticancer therapy: insight and perspectives from in silico. Curr Drug Targets 19:815–824

    CAS  PubMed  Google Scholar 

  • Ganai SA, Rashid R, Abdullah E, Altaf M (2017) Plant derived inhibitor sulforaphane in combinatorial therapy against therapeutically challenging pancreatic cancer. Anti Cancer Agents Med Chem 17:365–373

    CAS  Google Scholar 

  • Gandesiri M, Chakilam S, Ivanovska J, Benderska N, Ocker M, Di Fazio P, Feoktistova M, Gali-Muhtasib H, Rave-Frank M, Prante O, Christiansen H, Leverkus M, Hartmann A, Schneider-Stock R (2012) DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis 17:1300–1315

    CAS  PubMed  Google Scholar 

  • Garcia-Manero G, Assouline S, Cortes J, Estrov Z, Kantarjian H, Yang H, Newsome WM, Miller WH Jr, Rousseau C, Kalita A, Bonfils C, Dubay M, Patterson TA, Li Z, Besterman JM, Reid G, Laille E, Martell RE, Minden M (2008) Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood 112:981–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giannopoulou AF, Velentzas AD, Konstantakou EG, Avgeris M, Katarachia SA, Papandreou NC, Kalavros NI, Mpakou VE, Iconomidou V, Anastasiadou E, Kostakis IK, Papassideri IS, Voutsinas GE, Scorilas A, Stravopodis DJ (2019) Revisiting histone deacetylases in human tumorigenesis: the paradigm of urothelial bladder cancer. Int J Mol Sci 20:1291

    CAS  PubMed Central  Google Scholar 

  • Gibbs A, Schwartzman J, Deng V, Alumkal J (2009) Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci 106:16663–16668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gold PJ, Smith DA, Iriarte D, Boatman B, Kaplan HG (2012) Phase II trial of panobinostat (LBH589) in patients (pts) with refractory metastatic colorectal cancer (MCRC). J Clin Oncol 30:582–582

    Google Scholar 

  • Gould JJ, Kenney PA, Rieger-Christ KM, Silva Neto B, Wszolek MF, LaVoie A, Holway AH, Spurrier B, Austin J, Cammarata BK, Canes D, Libertino JA, Summerhayes IC (2010) Identification of tumor and invasion suppressor gene modulators in bladder cancer by different classes of histone deacetylase inhibitors using reverse phase protein arrays. J Urol 183:2395–2402

    CAS  PubMed  Google Scholar 

  • Gravina GL, Marampon F, Giusti I, Carosa E, Di Sante S, Ricevuto E, Dolo V, Tombolini V, Jannini EA, Festuccia C (2012) Differential effects of PXD101 (belinostat) on androgen-dependent and androgen-independent prostate cancer models. Int J Oncol 40:711–720

    CAS  PubMed  Google Scholar 

  • Gryder BE, Sodji QH, Oyelere AK (2012) Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem 4:505–524

    CAS  PubMed  Google Scholar 

  • Guimaraes I, Guimarães S, Daltoé R, Herlinger A, Klesia P, Madeira T, Ladislau I, Valadão P, Morais L, Junior S, Teixeira G, Amorim D, Zipinotti D, Santos K, Demuth L, Batista A, Rangel (2013) Conventional cancer treatment. https://doi.org/10.5772/55282

  • Gupta S, Albertson DJ, Parnell TJ, Butterfield A, Weston A, Pappas LM, Dalley B, O’Shea JM, Lowrance WT, Cairns BR, Schiffman JD, Sharma S (2019) Histone deacetylase inhibition has targeted clinical benefit in ARID1A-mutated advanced urothelial carcinoma. Mol Cancer Ther 18:185–195

    CAS  PubMed  Google Scholar 

  • Haefner M, Bluethner T, Niederhagen M, Moebius C, Wittekind C, Mossner J, Caca K, Wiedmann M (2008) Experimental treatment of pancreatic cancer with two novel histone deacetylase inhibitors. World J Gastroenterol 14:3681–3692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howard SC, McCormick J, Pui C-H, Buddington RK, Harvey RD (2016) Preventing and managing toxicities of high-dose methotrexate. Oncologist 21:1471–1482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hrabeta J, Stiborova M, Adam V, Kizek R, Eckschlager T (2014) Histone deacetylase inhibitors in cancer therapy. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:161–169

    PubMed  Google Scholar 

  • Jacobo E, Loening S, Schmidt JD, Culp DA (1977) Primary adenocarcinoma of the bladder: a retrospective study of 20 patients. J Urol 117:54–56

    CAS  PubMed  Google Scholar 

  • Jiang W, Guo Q, Wu J, Guo B, Wang Y, Zhao S, Lou H, Yu X, Mei X, Wu C, Qiao S, Wu Y (2012) Dual effects of sodium butyrate on hepatocellular carcinoma cells. Mol Biol Rep 39:6235–6242

    CAS  PubMed  Google Scholar 

  • Jin JS, Tsao TY, Sun PC, Yu CP, Tzao C (2012) SAHA inhibits the growth of colon tumors by decreasing histone deacetylase and the expression of cyclin D1 and survivin. Pathol Oncol Res 18:713–720

    CAS  PubMed  Google Scholar 

  • Kaletsch A, Pinkerneil M, Hoffmann MJ, Jaguva Vasudevan AA, Wang C, Hansen FK, Wiek C, Hanenberg H, Gertzen C, Gohlke H, Kassack MU, Kurz T, Schulz WA, Niegisch G (2018) Effects of novel HDAC inhibitors on urothelial carcinoma cells. Clin Epigenetics 10:100–100

    PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Bae SC (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3:166–179

    CAS  PubMed  Google Scholar 

  • Kim SW, Hooker JM, Otto N, Win K, Muench L, Shea C, Carter P, King P, Reid AE, Volkow ND, Fowler JS (2013) Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. Nucl Med Biol 40:912–918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler J, Erlenkamp G, Eberlin A, Rumpf T, Slynko I, Metzger E, Schule R, Sippl W, Jung M (2012) Lestaurtinib inhibits histone phosphorylation and androgen-dependent gene expression in prostate cancer cells. PLoS One 7:e34973

    PubMed  PubMed Central  Google Scholar 

  • Kong D, Ahmad A, Bao B, Li Y, Banerjee S, Sarkar FH (2012) Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One 7:e45045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong LR, Tan TZ, Ong WR, Bi C, Huynh H, Lee SC, Chng WJ, Eichhorn PJA, Goh BC (2017) Belinostat exerts antitumor cytotoxicity through the ubiquitin-proteasome pathway in lung squamous cell carcinoma. Mol Oncol 11:965–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konsoula Z, Cao H, Velena A, Jung M (2009) Pharmacokinetics-pharmacodynamics and antitumor activity of mercaptoacetamide-based histone deacetylase inhibitors. Mol Cancer Ther 8:2844–2851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kunnimalaiyaan S, Sokolowski K, Gamblin TC, Kunnimalaiyaan M (2017) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, alters multiple signaling pathways in hepatocellular carcinoma cell lines. Am J Surg 213:645–651

    PubMed  Google Scholar 

  • LaBonte MJ, Wilson PM, Fazzone W, Groshen S, Lenz HJ, Ladner RD (2009) DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. BMC Med Genet 2:67

    Google Scholar 

  • LaBonte MJ, Wilson PM, Fazzone W, Russell J, Louie SG, El-Khoueiry A, Lenz HJ, Ladner RD (2011) The dual EGFR/HER2 inhibitor lapatinib synergistically enhances the antitumor activity of the histone deacetylase inhibitor panobinostat in colorectal cancer models. Cancer Res 71:3635–3648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D, Saldanha SC (2014) Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther 10:469–478

    CAS  PubMed  Google Scholar 

  • Lee JE, Kim JH (2015) Valproic acid inhibits the invasion of PC3 prostate cancer cells by upregulating the metastasis suppressor protein NDRG1. Genet Mol Biol 38:527–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Park SB, Kim SA, Kwon SK, Cha H, Lee DY, Ro S, Cho JM, Song SY (2017) A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance. Sci Rep 7:41615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Seto E (2016) HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 6:a026831

    PubMed  PubMed Central  Google Scholar 

  • Li GC, Zhang X, Pan TJ, Chen Z, Ye ZQ (2006) Histone deacetylase inhibitor trichostatin A inhibits the growth of bladder cancer cells through induction of p21WAF1 and G1 cell cycle arrest. Int J Urol 13:581–586

    CAS  PubMed  Google Scholar 

  • Li Y, Karagöz GE, Seo YH, Zhang T, Jiang Y, Yu Y, Duarte AMS, Schwartz SJ, Boelens R, Carroll K, Rüdiger SGD, Sun D (2012) Sulforaphane inhibits pancreatic cancer through disrupting Hsp90-p50(Cdc37) complex and direct interactions with amino acids residues of Hsp90. J Nutr Biochem 23:1617–1626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li QQ, Hao JJ, Zhang Z, Hsu I, Liu Y, Tao Z, Lewi K, Metwalli AR, Agarwal PK (2016) Histone deacetylase inhibitor-induced cell death in bladder cancer is associated with chromatin modification and modifying protein expression: a proteomic approach. Int J Oncol 48:2591–2607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Ding C, Meng T, Lu W, Liu W, Hao H, Cao L (2017) Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner. J Pharmacol Sci 135:148–155

    CAS  PubMed  Google Scholar 

  • Liao B, Sun Q, Yuan Y, Yin Y, Qiao J, Jiang P (2020) Histone deacetylase inhibitor MGCD0103 causes cell cycle arrest, apoptosis, and autophagy in liver cancer cells. J Cancer 11:1915–1926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Atkinson SJ, Akbareian SE, Zhou Z, Munsterberg A, Robinson SD, Bao Y (2017) Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling. Sci Rep 7:12651

    PubMed  PubMed Central  Google Scholar 

  • Lombardi PM, Cole KE, Dowling DP, Christianson DW (2011) Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr Opin Struct Biol 21:735–743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loprevite M, Tiseo M, Grossi F, Scolaro T, Semino C, Pandolfi A, Favoni R, Ardizzoni A (2005) In vitro study of CI-994, a histone deacetylase inhibitor, in non-small cell lung cancer cell lines. Oncol Res 15:39–48

    CAS  PubMed  Google Scholar 

  • Lu X, Ning Z, Li Z, Cao H, Wang X (2016) Development of chidamide for peripheral T-cell lymphoma, the first orphan drug approved in China. Intractable Rare Dis Res 5:185–191

    PubMed  PubMed Central  Google Scholar 

  • Ma Y, Yue Y, Pan M, Sun J, Chu J, Lin X, Xu W, Feng L, Chen Y, Chen D, Shin VY, Wang X, Jin H (2015) Histone deacetylase 3 inhibits new tumor suppressor gene DTWD1 in gastric cancer. Am J Cancer Res 5:663–673

    PubMed  PubMed Central  Google Scholar 

  • Machado MC, Bellodi-Privato M, Kubrusly MS, Molan NA, Tharcisio T Jr, de Oliveira ER, D’Albuquerque LA (2011) Valproic acid inhibits human hepatocellular cancer cells growth in vitro and in vivo. J Exp Ther Oncol 9:85–92

    CAS  PubMed  Google Scholar 

  • Mariadason JM (2008) HDACs and HDAC inhibitors in colon cancer. Epigenetics 3:28–37

    PubMed  Google Scholar 

  • Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 18:197

    PubMed Central  Google Scholar 

  • Martin DT, Hoimes CJ, Kaimakliotis HZ, Cheng CJ, Zhang K, Liu J, Wheeler MA, Kelly WK, Tew GN, Saltzman WM, Weiss RM (2013) Nanoparticles for urothelium penetration and delivery of the histone deacetylase inhibitor belinostat for treatment of bladder cancer. Nanomedicine 9:1124–1134

    CAS  PubMed  Google Scholar 

  • Martinez-Zamudio R, Ha HC (2012) Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Mol Cell Biol 32:2490–2502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mawatari T, Ninomiya I, Inokuchi M, Harada S, Hayashi H, Oyama K, Makino I, Nakagawara H, Miyashita T, Tajima H, Takamura H, Fushida S, Ohta T (2015) Valproic acid inhibits proliferation of HER2-expressing breast cancer cells by inducing cell cycle arrest and apoptosis through Hsp70 acetylation. Int J Oncol 47:2073–2081

    CAS  PubMed  PubMed Central  Google Scholar 

  • McClure JJ, Li X, Chou CJ (2018) Advances and challenges of HDAC inhibitors in cancer therapeutics. Adv Cancer Res 138:183–211

    CAS  PubMed  Google Scholar 

  • Mehdi O, Francoise S, Sofia CL, Urs G, Kevin Z, Bernard S, Igor S, Anabela CD, Dominique L, Eric M, Ali O (2012) HDAC gene expression in pancreatic tumor cell lines following treatment with the HDAC inhibitors panobinostat (LBH589) and trichostatine (TSA). Pancreatology 12:146–155

    CAS  PubMed  Google Scholar 

  • Mickley LA, Bates SE, Richert ND, Currier S, Tanaka S, Foss F, Rosen N, Fojo AT (1989) Modulation of the expression of a multidrug resistance gene (mdr-1/P-glycoprotein) by differentiating agents. J Biol Chem 264:18031–18040

    CAS  PubMed  Google Scholar 

  • Miyanaga A, Gemma A, Noro R, Kataoka K, Matsuda K, Nara M, Okano T, Seike M, Yoshimura A, Kawakami A, Uesaka H, Nakae H, Kudoh S (2008) Antitumor activity of histone deacetylase inhibitors in non-small cell lung cancer cells: development of a molecular predictive model. Mol Cancer Ther 7:1923–1930

    CAS  PubMed  Google Scholar 

  • Moriya K, Sato S, Furukawa M, Saikawa S, Namisaki T, Kitade M, Kawaratani H, Kaji K, Takaya H, Shimozato N, Sawada Y, Seki K, Kitagawa K, Akahane T, Mitoro A, Okura Y, Yoshiji H, Yamao J (2018) Sulforaphane inhibits liver cancer cell growth and angiogenesis. Arch Can Res 6(4):23. https://doi.org/10.21767/2254-6081.100189

    Article  Google Scholar 

  • Mostofi FK (1968) Pathological aspects and spread of carcinoma of the bladder. JAMA 206:1764–1769 passim

    Google Scholar 

  • Niegisch G, Knievel J, Koch A, Hader C, Fischer U, Albers P, Schulz WA (2013) Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol Oncol 31:1770–1779

    CAS  PubMed  Google Scholar 

  • Niknamian S (2019) Valproic acid inhibit non-small-cell lung cancer (A549 cell line) metastasis via inhibition of CD44v6 and Nm23H1. https://doi.org/10.31219/osf.io/j6tcq

  • Noh H, Park J, Shim M, Lee Y (2016) Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia. Biochem Biophys Res Commun 470:748–752

    CAS  PubMed  Google Scholar 

  • Novotny-Diermayr V, Sangthongpitag K, Hu CY, Wu X, Sausgruber N, Yeo P, Greicius G, Pettersson S, Liang AL, Loh YK, Bonday Z, Goh KC, Hentze H, Hart S, Wang H, Ethirajulu K, Wood JM (2010) SB939, a novel potent and orally active histone deacetylase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer. Mol Cancer Ther 9:642–652

    CAS  PubMed  Google Scholar 

  • Ota S, Zhou ZQ, Hurlin PJ (2018) Suppression of FGFR3- and MYC-dependent oncogenesis by tubacin: association with HDAC6-dependent and independent activities. Oncotarget 9:3172–3187

    PubMed  Google Scholar 

  • Ozawa A, Tanji N, Kikugawa T, Sasaki T, Yanagihara Y, Miura N, Yokoyama M (2010) Inhibition of bladder tumour growth by histone deacetylase inhibitor. BJU Int 105:1181–1186

    CAS  PubMed  Google Scholar 

  • Paillas S, Then CK, Kilgas S, Ruan J-L, Thompson J, Elliott A, Smart S, Kiltie AE (2020) The histone deacetylase inhibitor romidepsin spares normal tissues while acting as an effective radiosensitizer in bladder tumors in vivo. Int J Radiat Oncol*Biol*Phys 107:212–221

    PubMed  PubMed Central  Google Scholar 

  • Pandey M, Kaur P, Shukla S, Abbas A, Fu P, Gupta S (2012) Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol Carcinog 51:952–962

    CAS  PubMed  Google Scholar 

  • Pant K, Yadav AK, Gupta P, Islam R, Saraya A, Venugopal SK (2017) Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol 12:340–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Seifi S, Parizadeh SMR, Moetamani-Ahmadi M, Hassanian SM, Khazaei M, Ghayour-Mobarhan M, Ferns GA, Avan A (2018) Epigenetic drug therapy in the treatment of colorectal cancer. Curr Pharm Des 24:2701–2709

    CAS  PubMed  Google Scholar 

  • Pellizzaro C, Coradini D, Daniotti A, Abolafio G, Daidone MG (2001) Modulation of cell cycle-related protein expression by sodium butyrate in human non-small cell lung cancer cell lines. Int J Cancer 91:654–657

    CAS  PubMed  Google Scholar 

  • Peulen O, Gonzalez A, Peixoto P, Turtoi A, Mottet D, Delvenne P, Castronovo V (2013) The anti-tumor effect of HDAC inhibition in a human pancreas cancer model is significantly improved by the simultaneous inhibition of cyclooxygenase 2. PLoS One 8:e75102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinkerneil M, Hoffmann MJ, Deenen R, Köhrer K, Arent T, Schulz WA, Niegisch G (2016) Inhibition of class I histone deacetylases 1 and 2 promotes urothelial carcinoma cell death by various mechanisms. Mol Cancer Ther 15:299–312

    CAS  PubMed  Google Scholar 

  • Platta CS, Greenblatt DY, Kunnimalaiyaan M, Chen H (2008) Valproic acid induces Notch1 signaling in small cell lung cancer cells. J Surg Res 148:31–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian DZ, Wei YF, Wang X, Kato Y, Cheng L, Pili R (2007) Antitumor activity of the histone deacetylase inhibitor MS-275 in prostate cancer models. Prostate 67:1182–1193

    CAS  PubMed  Google Scholar 

  • Rana Z, Diermeier S, Hanif M, Rosengren RJ (2020) Understanding failure and improving treatment using HDAC inhibitors for prostate cancer. Biomedicine 8:22

    CAS  Google Scholar 

  • Ray A, Alalem M, Ray BK (2013) Loss of epigenetic Kruppel-like factor 4 histone deacetylase (KLF-4-HDAC)-mediated transcriptional suppression is crucial in increasing vascular endothelial growth factor (VEGF) expression in breast cancer. J Biol Chem 288:27232–27242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97:10014–10019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saha RN, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13:539–550

    CAS  PubMed  Google Scholar 

  • Salimi V, Shahsavari Z, Safizadeh B, Hosseini A, Khademian N, Tavakoli-Yaraki M (2017) Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment. Lipids Health Dis 16:208–208

    PubMed  PubMed Central  Google Scholar 

  • Sanaei M, Kavoosi F (2019) Histone deacetylases and histone deacetylase inhibitors: molecular mechanisms of action in various cancers. Adv Biomed Res 8:63–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar R, Chakraborty Mukherjee S (2015) Sulforaphane inhibits metastatic events in breast cancer cells through genetic and epigenetic regulation. J Carcinog Mutagen 06

    Google Scholar 

  • Sharma S, Witteveen PO, Lolkema MP, Hess D, Gelderblom H, Hussain SA, Porro MG, Waldron E, Valera SZ, Mu S (2015) A phase I, open-label, multicenter study to evaluate the pharmacokinetics and safety of oral panobinostat in patients with advanced solid tumors and varying degrees of renal function. Cancer Chemother Pharmacol 75:87–95

    CAS  PubMed  Google Scholar 

  • Shi P, Yin T, Zhou F, Cui P, Gou S, Wang C (2014) Valproic acid sensitizes pancreatic cancer cells to natural killer cell-mediated lysis by upregulating MICA and MICB via the PI3K/Akt signaling pathway. BMC Cancer 14:370

    PubMed  PubMed Central  Google Scholar 

  • Shi X-Y, Ding W, Li T-Q, Zhang Y-X, Zhao S-C (2017) Histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), induces apoptosis in prostate cancer cell lines via the Akt/FOXO3a signaling pathway. Med Sci Monit 23:5793–5802

    PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

    PubMed  Google Scholar 

  • Song Q, Li M, Fan C, Liu Y, Zheng L, Bao Y, Sun L, Yu C, Song Z, Sun Y, Wang G, Huang Y, Li Y (2019) A novel benzamine lead compound of histone deacetylase inhibitor ZINC24469384 can suppresses HepG2 cells proliferation by upregulating NR1H4. Sci Rep 9:2350

    PubMed  PubMed Central  Google Scholar 

  • Soukupova J, Bertran E, Peñuelas-Haro I, Urdiroz-Urricelqui U, Borgman M, Kohlhof H, Fabregat I (2017) Resminostat induces changes in epithelial plasticity of hepatocellular carcinoma cells and sensitizes them to sorafenib-induced apoptosis. Oncotarget 8:110367–110379

    PubMed  PubMed Central  Google Scholar 

  • Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I, Piekarz RL (2010) Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals (Basel) 3:2751–2767

    CAS  Google Scholar 

  • Sun P-C, Tzao C, Chen B-H, Liu C-W, Jin J-S (2010) Suberoylanilide hydroxamic acid induces apoptosis and sub-G1 arrest of 320 HSR colon cancer cells. J Biomed Sci 17:76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Han Y, Liu J, Fang Y, Tian Y, Zhou J, Ma D, Wu P (2014) Trichostatin A targets the mitochondrial respiratory chain, increasing mitochondrial reactive oxygen species production to trigger apoptosis in human breast cancer cells. PLoS One 9:e91610

    PubMed  PubMed Central  Google Scholar 

  • Sun J-Y, Wang J-D, Wang X, Liu H-C, Zhang M-M, Liu Y-C, Zhang C-H, Su Y, Shen Y-Y, Guo Y-W, Shen A-J, Geng M-Y (2017) Marine-derived chromopeptide A, a novel class I HDAC inhibitor, suppresses human prostate cancer cell proliferation and migration. Acta Pharmacol Sin 38:551–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y-A, Wen W-L, Chang J-W, Wei T-T, Tan Y-HC, Salunke S, Chen C-T, Chen C-S, Wang Y-C (2010) A novel histone deacetylase inhibitor exhibits antitumor activity via apoptosis induction, F-actin disruption and gene acetylation in lung cancer. PLoS One 5:e12417

    PubMed  PubMed Central  Google Scholar 

  • Tate CR, Rhodes LV, Segar HC, Driver JL, Pounder FN, Burow ME, Collins-Burow BM (2012) Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res 14:R79–R79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tee YT, Chen GD, Lin LY, Ko JL, Wang PH (2006) Nm23-H1: a metastasis-associated gene. Taiwan J Obstet Gynecol 45:107–113

    PubMed  Google Scholar 

  • Thomas DG, Ward AM, Williams JL (1971) A study of 52 cases of adenocarcinoma of the bladder. Br J Urol 43:4–15

    CAS  PubMed  Google Scholar 

  • Thomas M, Kelly ED, Abraham J, Kruse M (2019) Invasive lobular breast cancer: a review of pathogenesis, diagnosis, management, and future directions of early stage disease. Semin Oncol 46:121–132

    PubMed  Google Scholar 

  • Vallo S, Xi W, Hudak L, Juengel E, Tsaur I, Wiesner C, Haferkamp A, Blaheta RA (2011) HDAC inhibition delays cell cycle progression of human bladder cancer cells in vitro. Anti-Cancer Drugs 22:1002–1009

    CAS  PubMed  Google Scholar 

  • Wang G, He J, Taub JW, Guo Y, Ge Y (2012) Abstract 1830: both class I and class II histone deacetylases are required for proliferation and survival of human pancreatic cancer cells. Cancer Res 72:1830–1830

    Google Scholar 

  • Wang HG, Huang XD, Shen P, Li LR, Xue HT, Ji GZ (2013) Anticancer effects of sodium butyrate on hepatocellular carcinoma cells in vitro. Int J Mol Med 31:967–974

    CAS  PubMed  Google Scholar 

  • Wang H, Huang C, Zhao L, Zhang H, Yang JM, Luo P, Zhan BX, Pan Q, Li J, Wang BL (2016) Histone deacetylase inhibitors regulate P-gp expression in colorectal cancer via transcriptional activation and mRNA stabilization. Oncotarget 7:49848–49858

    PubMed  PubMed Central  Google Scholar 

  • Wang D-X, Zou Y-J, Zhuang X-B, Chen S-X, Lin Y, Li W-L, Lin J-J, Lin Z-Q (2017) Sulforaphane suppresses EMT and metastasis in human lung cancer through miR-616-5p-mediated GSK3β/β-catenin signaling pathways. Acta Pharmacol Sin 38:241–251

    CAS  PubMed  Google Scholar 

  • Wang F, Wu H, Fan M, Yu R, Zhang Y, Liu J, Zhou X, Cai Y, Huang S, Hu Z, Jin X (2020) Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells. FASEB J 34:4266–4282

    CAS  PubMed  Google Scholar 

  • Whitehead RP, Rankin C, Hoff PM, Gold PJ, Billingsley KG, Chapman RA, Wong L, Ward JH, Abbruzzese JL, Blanke CD (2009) Phase II trial of romidepsin (NSC-630176) in previously treated colorectal cancer patients with advanced disease: a Southwest Oncology Group Study (S0336). Investig New Drugs 27:469–475

    CAS  Google Scholar 

  • Wilting RH, Dannenberg J-H (2012) Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist Updat 15:21–38

    CAS  PubMed  Google Scholar 

  • Xia Q, Sung J, Chowdhury W, Chen CL, Hoti N, Shabbeer S, Carducci M, Rodriguez R (2006) Chronic administration of valproic acid inhibits prostate cancer cell growth in vitro and in vivo. Cancer Res 66:7237–7244

    CAS  PubMed  Google Scholar 

  • Xu Y, Zheng S, Chen B, Wen Y, Zhu S (2016) Sodium phenylbutyrate antagonizes prostate cancer through the induction of apoptosis and attenuation of cell viability and migration. Onco Targets Ther 9:2825–2833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Tao J, Chen P, Chen L, Sharma S, Wang G, Dong Q (2018) Sodium butyrate inhibits colorectal cancer cell migration by downregulating Bmi-1 through enhanced miR-200c expression. Mol Nutr Food Res 62:e1700844

    PubMed  Google Scholar 

  • Yamamoto H, Fujimoto J, Okamoto E, Furuyama J, Tamaoki T, Hashimoto-Tamaoki T (1998) Suppression of growth of hepatocellular carcinoma by sodium butyrate in vitro and in vivo. Int J Cancer 76:897–902

    CAS  PubMed  Google Scholar 

  • Yang H, Zhong Y, Xie H, Lai X, Xu M, Nie Y, Liu S, Wan YJ (2013) Induction of the liver cancer-down-regulated long noncoding RNA uc002mbe.2 mediates trichostatin-induced apoptosis of liver cancer cells. Biochem Pharmacol 85:1761–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaxley JP (2016) Urinary tract cancers: an overview for general practice. J Family Med Prim Care 5:533–538

    PubMed  PubMed Central  Google Scholar 

  • Zappa C, Mousa SA (2016) Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 5:288–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yi M, Zha L, Chen S, Li Z, Li C, Gong M, Deng H, Chu X, Chen J, Zhang Z, Mao L, Sun S (2016a) Sodium butyrate induces endoplasmic reticulum stress and autophagy in colorectal cells: implications for apoptosis. PLoS One 11:e0147218

    PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Sun M, Zhou S, Guo B (2016b) Class I HDAC inhibitor mocetinostat induces apoptosis by activation of miR-31 expression and suppression of E2F6. Cell Death Discov 2:16036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Liu L, Liu C, Pan J, Lu G, Zhou Z, Chen Z, Qian C (2017) Notch3 overexpression enhances progression and chemoresistance of urothelial carcinoma. Oncotarget 8:34362–34373

    PubMed  PubMed Central  Google Scholar 

  • Zhao J, Gray SG, Wabitsch M, Greene CM, Lawless MW (2018) The therapeutic properties of resminostat for hepatocellular carcinoma. Onco Targets Ther 5:196–208

    Google Scholar 

  • Zhou SF (2008) Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38:802–832

    CAS  PubMed  Google Scholar 

  • Zhou H, Cai Y, Liu D, Li M, Sha Y, Zhang W, Wang K, Gong J, Tang N, Huang A, Xia J (2018) Pharmacological or transcriptional inhibition of both HDAC1 and 2 leads to cell cycle blockage and apoptosis via p21(Waf1/Cip1) and p19(INK4d) upregulation in hepatocellular carcinoma. Cell Prolif 51:e12447–e12447

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganai, S.A. (2020). Singlet Anticancer Therapy Through Epi-Weapons Histone Deacetylase Inhibitors and Its Shortcomings. In: Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-8179-3_9

Download citation

Publish with us

Policies and ethics