Skip to main content

Summa of Erasers of Histone Acetylation with Special Emphasis on Classical Histone Deacetylases (HDACs)

  • Chapter
  • First Online:
Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy

Abstract

The human genome in order to get accommodated within the constrained nuclear space requires remarkably high level of condensation (Tseng and Yang 2013). This condensation results in the formation of chromatin, a supremely organized nucleoprotein structure (Olins and Olins 1974). Nucleosome forms the fundamental unit of this structural polymer (chromatin). Each nucleosome has a nucleosome core formed from an octameric complex made of polycationic core histones around which 145–147 bp of DNA are wrapped (Davey et al. 2002; Korolev et al. 2018; Luger et al. 1997; McGinty and Tan 2015). Adjacent nucleosome cores of two nucleosomes are connected by linker DNA which is frequently in contact with linker histone H1 (or H5 in birds) (Andreeva et al. 1978; Simpson 1978). Apart from the significant role in genomic compaction, nucleosomes serve as signalling focal points for chromatin-templated processes (McGinty and Tan 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreeva NB, Vishnevskaia T, Gazarian KG (1978) Role of serine-rich histone (H5) in bird erythrocyte genome inactivation. Mol Biol 12:123–134

    CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes CE, English DM, Cowley SM (2019) Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem 63:97–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R (2010) Chemical phylogenetics of histone deacetylases. Nat Chem Biol 6:238–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buggy JJ, Sideris ML, Mak P, Lorimer DD, McIntosh B, Clark JM (2000) Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J 350(Pt 1):199–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai RL, Yan-Neale Y, Cueto MA, Xu H, Cohen D (2000) HDAC1, a histone deacetylase, forms a complex with Hus1 and Rad9, two G2/M checkpoint Rad proteins. J Biol Chem 275:27909–27916

    Article  CAS  PubMed  Google Scholar 

  • Chini CC, Escande C, Nin V, Chini EN (2010) HDAC3 is negatively regulated by the nuclear protein DBC1. J Biol Chem 285:40830–40837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9Å resolution††we dedicate this paper to the memory of Max Perutz who was particularly inspirational and supportive to T.J.R. in the early stages of this study. J Mol Biol 319:1097–1113

    Article  CAS  PubMed  Google Scholar 

  • David D, Cardoso J, Marques B, Marques R, Silva ED, Santos H, Boavida MG (2003) Molecular characterization of a familial translocation implicates disruption of HDAC9 and possible position effect on TGFbeta2 in the pathogenesis of Peters’ anomaly. Genomics 81:489–503

    Article  CAS  PubMed  Google Scholar 

  • de Leval L, Waltregny D, Boniver J, Young RH, Castronovo V, Oliva E (2006) Use of histone deacetylase 8 (HDAC8), a new marker of smooth muscle differentiation, in the classification of mesenchymal tumors of the uterus. Am J Surg Pathol 30:319–327

    Article  PubMed  Google Scholar 

  • Denu JM (2005) The Sir 2 family of protein deacetylases. Curr Opin Chem Biol 9:431–440

    Article  CAS  PubMed  Google Scholar 

  • Ganai S (2015) In silico approaches towards safe targeting of class I histone deacetylases. https://doi.org/10.1007/978-1-4614-6436-5_459-1, pp 1–9

  • Ganai SA (2016) Histone deacetylase inhibitor pracinostat in doublet therapy: a unique strategy to improve therapeutic efficacy and to tackle herculean cancer chemoresistance. Pharm Biol 54:1926–1935

    Article  CAS  PubMed  Google Scholar 

  • Ganai SA (2017) Small-molecule modulation of HDAC6 activity: the propitious therapeutic strategy to vanquish neurodegenerative disorders. Curr Med Chem 24:4104–4120

    CAS  PubMed  Google Scholar 

  • Ganai SA (2019) HDACs and their distinct classes. In: Ganai SA (ed) Histone deacetylase inhibitors — epidrugs for neurological disorders. Springer, Singapore, pp 21–25

    Chapter  Google Scholar 

  • Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748–25755

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Li X, Lam M, Liu Y, Chakraborty S, Kao H-Y (2006) CRM1 mediates nuclear export of HDAC7 independently of HDAC7 phosphorylation and association with 14-3-3s. FEBS Lett 580:5096–5104

    Article  CAS  PubMed  Google Scholar 

  • Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci U S A 96:4868–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guardiola AR, Yao TP (2002) Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem 277:3350–3356

    Article  CAS  PubMed  Google Scholar 

  • Hai Y, Christianson DW (2016) Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat Chem Biol 12:741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, Finn PW, Collins LS, Tumber A, Ritchie JW, Jensen PB, Lichenstein HS, Sehested M (2007) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409:581–589

    Article  CAS  Google Scholar 

  • Korolev N, Lyubartsev AP, Nordenskiöld L (2018) A systematic analysis of nucleosome core particle and nucleosome-nucleosome stacking structure. Sci Rep 8:1543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kupis W, Pałyga J, Tomal E, Niewiadomska E (2016) The role of sirtuins in cellular homeostasis. J Physiol Biochem 72:371–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, Sambucini S, Bottomley MJ, Lo Surdo P, Carfí A, Koch U, De Francesco R, Steinkühler C, Gallinari P (2007) Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci U S A 104:17335–17340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawlor L, Yang XB (2019) Harnessing the HDAC–histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci 11:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee H, Rezai-Zadeh N, Seto E (2004) Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A. Mol Cell Biol 24:765–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Song S, Liu Y, Ko SH, Kao HY (2004) Phosphorylation of the histone deacetylase 7 modulates its stability and association with 14-3-3 proteins. J Biol Chem 279:34201–34208

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Martin D, Li Y, Yang J, Wang G, Margariti A, Jiang Z, Yu H, Zampetaki A, Hu Y, Xu Q, Zeng L (2014) Unspliced X-box-binding protein 1 (XBP1) protects endothelial cells from oxidative stress through interaction with histone deacetylase 3. J Biol Chem 289:30625–30634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGinty RK, Tan S (2015) Nucleosome structure and function. Chem Rev 115:2255–2273

    Article  CAS  PubMed  Google Scholar 

  • McKinsey TA, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18:5099–5107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mottamal M, Zheng S, Huang TL, Wang G (2015) Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules (Basel, Switzerland) 20:3898–3941

    Article  CAS  Google Scholar 

  • Nutsford AN, Galvin HD, Ahmed F, Husain M (2019) The class IV human deacetylase, HDAC11, exhibits anti-influenza A virus properties via its involvement in host innate antiviral response. Cell Microbiol 21:e12989

    Article  PubMed  CAS  Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (ν bodies). Science (New York, N.Y.) 183:330–332

    Article  CAS  Google Scholar 

  • Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS (2007) Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol 178:1025–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parihar P, Solanki I, Mansuri ML, Parihar MS (2015) Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases. Exp Gerontol 61:130–141

    Article  CAS  PubMed  Google Scholar 

  • Petrie K, Guidez F, Howell L, Healy L, Waxman S, Greaves M, Zelent A (2003) The histone deacetylase 9 gene encodes multiple protein isoforms. J Biol Chem 278:16059–16072

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan R, Li Y, Xiang S, Yuan F, Yuan Z, Telles E, Fang J, Coppola D, Shibata D, Lane WS, Zhang Y, Zhang X, Seto E (2015) Histone deacetylase 10 regulates DNA mismatch repair and may involve the deacetylation of MutS homolog 2. J Biol Chem 290:22795–22804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sack MN, Finkel T (2012) Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb Perspect Biol 4

    Google Scholar 

  • Santos L, Escande C, Denicola A (2016) Potential modulation of sirtuins by oxidative stress. Oxidative Med Cell Longev 2016:9831825

    Google Scholar 

  • Shinsky SA, Christianson DW (2018) Polyamine deacetylase structure and catalysis: prokaryotic acetylpolyamine amidohydrolase and eukaryotic HDAC10. Biochemistry 57:3105–3114

    Article  CAS  PubMed  Google Scholar 

  • Simpson RT (1978) Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17:5524–5531

    Article  CAS  PubMed  Google Scholar 

  • Tolsma TO, Hansen JC (2019) Post-translational modifications and chromatin dynamics. Essays Biochem 63:89–96

    Article  CAS  PubMed  Google Scholar 

  • Tseng C, Yang X (2013) Packaging DNA into chromosomes: how do the long threads of DNA fit into the small interphase nucleus? pp 111–129

    Google Scholar 

  • Vaquero A (2009) The conserved role of sirtuins in chromatin regulation. Int J Dev Biol 53:303–322

    Article  CAS  PubMed  Google Scholar 

  • Verdin E, Dequiedt F, Kasler HG (2003) Class II histone deacetylases: versatile regulators. Trends Genet 19:286–293

    Article  CAS  PubMed  Google Scholar 

  • Villagra A, Cheng F, Wang H-W, Suarez I, Glozak M, Maurin M, Nguyen D, Wright KL, Atadja PW, Bhalla K, Pinilla-Ibarz J, Seto E, Sotomayor EM (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10:92–100

    Article  CAS  PubMed  Google Scholar 

  • Waltregny D, Glénisson W, Tran SL, North BJ, Verdin E, Colige A, Castronovo V (2005) Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. FASEB J 19:966–968

    Article  CAS  PubMed  Google Scholar 

  • Yang X-J, Grégoire S (2005) Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 25:2873–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26:5310–5318

    Article  CAS  PubMed  Google Scholar 

  • Yang WM, Tsai SC, Wen YD, Fejer G, Seto E (2002) Functional domains of histone deacetylase-3. J Biol Chem 277:9447–9454

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Richon VM, Rifkind RA, Marks PA (2000) Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc Natl Acad Sci U S A 97:1056–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Marks PA, Rifkind RA, Richon VM (2001) Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci U S A 98:10572–10577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganai, S.A. (2020). Summa of Erasers of Histone Acetylation with Special Emphasis on Classical Histone Deacetylases (HDACs). In: Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-8179-3_3

Download citation

Publish with us

Policies and ethics