Skip to main content

Futuristic Approaches Towards Designing of Isozyme-Selective Histone Deacetylase Inhibitors Against Zinc-Dependent Histone Deacetylases

  • Chapter
  • First Online:
Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy
  • 223 Accesses

Abstract

The toxicity issue associated with histone deacetylase inhibitors (HDACi) has been soothed to a greater degree through combinatorial therapeutic strategy. Most of the HDACi being pan-inhibitors often target a broad range of classical HDACs thereby inducing off-target effects. One of the reasons for off-targeting is the high sequence identity at the active sites of classical HDACs. As of now among the four US FDA approved inhibitors three are pan and only one romidepsin is Class I selective. Certain noticeable side effects like thrombocytopenia and fatigue have been reported with pan-HDACi. Due to various aspects of HDACs including the role of specific isozymes in different cancer types it has been hypothesized that intervention with isozyme-selective HDACi may show superior therapeutic index and lesser toxicity. The studies with isozyme-selective inhibitors are ongoing and their enhanced therapeutic benefit is yet to be proved in clinical models. Here I will discuss the different strategies that have been employed for designing isozyme-selective HDACi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alp E, Damkaci F, Guven E, Tenniswood M (2019) Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int J Nanomedicine 14:1335–1346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ (2008) A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22:1026–1034

    CAS  PubMed  Google Scholar 

  • Bhuiyan MP, Kato T, Okauchi T, Nishino N, Maeda S, Nishino TG, Yoshida M (2006) Chlamydocin analogs bearing carbonyl group as possible ligand toward zinc atom in histone deacetylases. Bioorg Med Chem 14:3438–3446

    CAS  PubMed  Google Scholar 

  • Bieliauskas AV, Pflum MKH (2008) Isoform-selective histone deacetylase inhibitors. Chem Soc Rev 37:1402–1413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP (2010) Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc 132:10842–10846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai M, Hu J, Tian J-L, Yan H, Zheng C-G, Hu W-L (2015) Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities. Chin Chem Lett 26:675–680

    CAS  Google Scholar 

  • Cao J, Sun L, Aramsangtienchai P, Spiegelman N, Zhang X, Huang W, Seto E, Lin H (2019) HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc Natl Acad Sci 116:201815365

    Google Scholar 

  • Chakrabarti A, Melesina J, Kolbinger FR, Oehme I, Senger J, Witt O, Sippl W, Jung M (2016) Targeting histone deacetylase 8 as a therapeutic approach to cancer and neurodegenerative diseases. Future Med Chem 8:1609–1634

    CAS  PubMed  Google Scholar 

  • Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, Kim DY (2001) Expression profile of histone deacetylase 1 in gastric cancer tissues. Japanese J Cancer Res 92:1300–1304

    CAS  Google Scholar 

  • Choi MA, Park SY, Chae HY, Song Y, Sharma C, Seo YH (2019) Design, synthesis and biological evaluation of a series of CNS penetrant HDAC inhibitors structurally derived from amyloid-β probes. Sci Rep 9:13187

    PubMed  PubMed Central  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debnath S, Debnath T, Bhaumik S, Majumdar S, Kalle AM, Aparna V (2019) Discovery of novel potential selective HDAC8 inhibitors by combine ligand-based, structure-based virtual screening and in-vitro biological evaluation. Sci Rep 9:17174

    PubMed  PubMed Central  Google Scholar 

  • Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, Chiao JH, Reilly JF, Ricker JL, Richon VM, Frankel SR (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109:31–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng GW, Dong LD, Shang WJ, Pang XL, Li JF, Liu L, Wang Y (2014) HDAC5 promotes cell proliferation in human hepatocellular carcinoma by up-regulating Six1 expression. Eur Rev Med Pharmacol Sci 18:811–816

    PubMed  Google Scholar 

  • Fu Y, Zhao J, Chen Z (2018) Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: a case of oligopeptide binding protein. Comput Math Methods Med 2018:3502514

    PubMed  PubMed Central  Google Scholar 

  • Ganai S (2015) In silico approaches towards safe targeting of class I histone deacetylases. https://doi.org/10.1007/978-1-4614-6436-5_459-1, pp 1–9

  • Ganai SA (2016) Novel approaches towards designing of isoform-selective inhibitors against class II histone deacetylases: the acute requirement for Targetted anticancer therapy. Curr Top Med Chem 16:2441–2452

    CAS  PubMed  Google Scholar 

  • Ganai SA (2018) Designing isoform-selective inhibitors against classical HDACs for effective anticancer therapy: insight and perspectives from in Silico. Curr Drug Targets 19:815–824

    CAS  PubMed  Google Scholar 

  • Ganai SA, Shanmugam K, Mahadevan V (2015) Energy-optimised pharmacophore approach to identify potential hotspots during inhibition of class II HDAC isoforms. J Biomol Struct Dyn 33:374–387

    CAS  PubMed  Google Scholar 

  • Géraldy M, Morgen M, Sehr P, Steimbach RR, Moi D, Ridinger J, Oehme I, Witt O, Malz M, Nogueira MS, Koch O, Gunkel N, Miller AK (2019) Selective inhibition of histone deacetylase 10: hydrogen bonding to the gatekeeper residue is implicated. J Med Chem 62:4426–4443

    PubMed  Google Scholar 

  • Gibbs A, Schwartzman J, Deng V, Alumkal J (2009) Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6. Proc Natl Acad Sci 106:16663–16668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gryder BE, Sodji QH, Oyelere AK (2012) Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem 4:505–524

    CAS  PubMed  Google Scholar 

  • Guardiola AR, Yao TP (2002) Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem 277:3350–3356

    CAS  PubMed  Google Scholar 

  • Gupta P, Reid RC, Iyer A, Sweet MJ, Fairlie DP (2012) Towards isozyme-selective HDAC inhibitors for interrogating disease. Curr Top Med Chem 12:1479–1499

    CAS  PubMed  Google Scholar 

  • Haggarty SJ, Koeller KM, Wong JC, Butcher RA, Schreiber SL (2003a) Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem Biol 10:383–396

    CAS  PubMed  Google Scholar 

  • Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003b) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100:4389–4394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamze A (2020) How do we improve histone deacetylase inhibitor drug discovery? Expert Opin Drug Discovery 15:527–529

    Google Scholar 

  • Han A, He J, Wu Y, Liu JO, Chen L (2005) Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. J Mol Biol 345:91–102

    CAS  PubMed  Google Scholar 

  • Hideshima T, Qi J, Paranal RM, Tang W, Greenberg E, West N, Colling ME, Estiu G, Mazitschek R, Perry JA, Ohguchi H, Cottini F, Mimura N, Görgün G, Tai Y-T, Richardson PG, Carrasco RD, Wiest O, Schreiber SL, Anderson KC, Bradner JE (2016) Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma. Proc Natl Acad Sci 113:13162–13167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Du J, Liu R, Zhou Y, Li M, Xu W, Fang H (2015) Enhancing the sensitivity of pharmacophore-based virtual screening by incorporating customized ZBG features: a case study using histone deacetylase 8. J Chem Inf Model 55:861–871

    CAS  PubMed  Google Scholar 

  • Hu E, Dul E, Sung C-M, Chen Z, Kirkpatrick R, Zhang G-F, Johanson K, Liu R, Lago A, Hofmann G, Macarron R, De Los Frailes M, Perez P, Krawiec J, Winkler J, Jaye M (2003) Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 307:720–728

    CAS  PubMed  Google Scholar 

  • Islam MM, Banerjee T, Packard CZ, Kotian S, Selvendiran K, Cohn DE, Parvin JD (2017) HDAC10 as a potential therapeutic target in ovarian cancer. Gynecol Oncol 144:613–620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jochems J, Boulden J, Lee B, Blendy J, Jarpe M, Mazitschek R, Duzer V, Berton O (2013) Antidepressant-like properties of novel HDAC6 selective inhibitors with improved brain bioavailability. Neuropsychopharmacology

    Google Scholar 

  • Kalyaanamoorthy S, Chen Y-PP (2013) Energy based pharmacophore mapping of HDAC inhibitors against class I HDAC enzymes. Biochim Biophys Acta Proteins Proteomics 1834:317–328

    CAS  Google Scholar 

  • Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7:854–868

    CAS  PubMed  Google Scholar 

  • Krennhrubec K, Marshall BL, Hedglin M, Verdin E, Ulrich SM (2007) Design and evaluation of ‘Linkerless’ hydroxamic acids as selective HDAC8 inhibitors. Bioorg Med Chem Lett 17:2874–2878

    CAS  PubMed  Google Scholar 

  • Liu C, Ding H, Li X, Pallasch CP, Hong L, Guo D, Chen Y, Wang D, Wang W, Wang Y, Hemann MT, Jiang H (2015) A DNA/HDAC dual-targeting drug CY190602 with significantly enhanced anticancer potency. EMBO Mol Med 7:438–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, McKinsey TA, Zhang CL, Olson EN (2000) Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6:233–244

    CAS  PubMed  Google Scholar 

  • Marek M, Shaik TB, Heimburg T, Chakrabarti A, Lancelot J, Ramos-Morales E, Da Veiga C, Kalinin D, Melesina J, Robaa D, Schmidtkunz K, Suzuki T, Holl R, Ennifar E, Pierce RJ, Jung M, Sippl W, Romier C (2018) Characterization of histone deacetylase 8 (HDAC8) selective inhibition reveals specific active site structural and functional determinants. J Med Chem 61:10000–10016

    CAS  PubMed  Google Scholar 

  • Martin DT, Hoimes CJ, Kaimakliotis HZ, Cheng CJ, Zhang K, Liu J, Wheeler MA, Kelly WK, Tew GN, Saltzman WM, Weiss RM (2013) Nanoparticles for urothelium penetration and delivery of the histone deacetylase inhibitor belinostat for treatment of bladder cancer. Nanomedicine 9:1124–1134

    CAS  PubMed  Google Scholar 

  • Milde T, Oehme I, Korshunov A, Kopp-Schneider A, Remke M, Northcott P, Deubzer HE, Lodrini M, Taylor MD, von Deimling A, Pfister S, Witt O (2010) HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res 16:3240–3252

    CAS  PubMed  Google Scholar 

  • Morphy R, Kay C, Rankovic Z (2004) From magic bullets to designed multiple ligands. Drug Discov Today 9:641–651

    CAS  PubMed  Google Scholar 

  • Negmeldin AT, Pflum MKH (2019) Abstract 19: design and synthesis of biaryl indolyl benzamides as HDAC1-selective inhibitors via a fragment-based lead generation approach. Cancer Res 79:19–19

    Google Scholar 

  • Oehme I, Linke J-P, Böck BC, Milde T, Lodrini M, Hartenstein B, Wiegand I, Eckert C, Roth W, Kool M, Kaden S, Gröne H-J, Schulte JH, Lindner S, Hamacher-Brady A, Brady NR, Deubzer HE, Witt O (2013) Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc Natl Acad Sci 110:E2592–E2601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ouaïssi M, Sielezneff I, Silvestre R, Sastre B, Bernard JP, Lafontaine JS, Payan MJ, Dahan L, Pirrò N, Seitz JF, Mas E, Lombardo D, Ouaissi A (2008) High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann Surg Oncol 15:2318–2328

    PubMed  Google Scholar 

  • Rosini M (2014) Polypharmacology: the rise of multitarget drugs over combination therapies. Future Med Chem 6:485–487

    CAS  PubMed  Google Scholar 

  • Sakuma T, Uzawa K, Onda T, Shiiba M, Yokoe H, Shibahara T, Tanzawa H (2006) Aberrant expression of histone deacetylase 6 in oral squamous cell carcinoma. Int J Oncol 29:117–124

    CAS  PubMed  Google Scholar 

  • Schweipert M, Jänsch N, Sugiarto WO, Meyer-Almes FJ (2019) Kinetically selective and potent inhibitors of HDAC8. Biol Chem 400:733–743

    CAS  PubMed  Google Scholar 

  • Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713

    PubMed  PubMed Central  Google Scholar 

  • Shen J, Woodward R, Kedenburg JP, Liu X, Chen M, Fang L, Sun D, Wang PG (2008) Histone deacetylase inhibitors through click chemistry. J Med Chem 51:7417–7427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siliphaivanh P, Harrington P, Witter DJ, Otte K, Tempest P, Kattar S, Kral AM, Fleming JC, Deshmukh SV, Harsch A, Secrist PJ, Miller TA (2007) Design of novel histone deacetylase inhibitors. Bioorg Med Chem Lett 17:4619–4624

    CAS  PubMed  Google Scholar 

  • Singleton WG, Collins AM, Bienemann AS, Killick-Cole CL, Haynes HR, Asby DJ, Butts CP, Wyatt MJ, Barua NU, Gill SS (2017) Convection enhanced delivery of panobinostat (LBH589)-loaded pluronic nano-micelles prolongs survival in the F98 rat glioma model. Int J Nanomedicine 12:1385–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skok Ž, Zidar N, Kikelj D, Ilaš J (2020) Dual inhibitors of human DNA topoisomerase II and other cancer-related targets. J Med Chem 63:884–904

    CAS  PubMed  Google Scholar 

  • Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD, Jennings AJ, Luong C, Arvai A, Buggy JJ, Chi E, Tang J, Sang BC, Verner E, Wynands R, Leahy EM, Dougan DR, Snell G, Navre M, Knuth MW, Swanson RV, McRee DE, Tari LW (2004) Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12:1325–1334

    CAS  PubMed  Google Scholar 

  • Son SI, Cao J, Zhu C-L, Miller SP, Lin H (2019) Activity-guided design of HDAC11-specific inhibitors. ACS Chem Biol 14:1393–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Yao Y, Liu C, Li H, Yao H, Xue X, Liu J, Tu Z, Jiang S (2013) Design, synthesis, and biological evaluation of novel histone deacetylase 1 inhibitors through click chemistry. Bioorg Med Chem Lett 23:3295–3299

    CAS  PubMed  Google Scholar 

  • Suzuki T, Kouketsu A, Itoh Y, Hisakawa S, Maeda S, Yoshida M, Nakagawa H, Miyata N (2006) Highly potent and selective histone deacetylase 6 inhibitors designed based on a small-molecular substrate. J Med Chem 49:4809–4812

    CAS  PubMed  Google Scholar 

  • Suzuki T, Ota Y, Ri M, Bando M, Gotoh A, Itoh Y, Tsumoto H, Tatum PR, Mizukami T, Nakagawa H, Iida S, Ueda R, Shirahige K, Miyata N (2012) Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries. J Med Chem 55:9562–9575

    CAS  PubMed  Google Scholar 

  • Suzuki T, Kasuya Y, Itoh Y, Ota Y, Zhan P, Asamitsu K, Nakagawa H, Okamoto T, Miyata N (2013) Identification of highly selective and potent histone deacetylase 3 inhibitors using click chemistry-based combinatorial fragment assembly. PLoS One 8:e68669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talevi A (2015) Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front Pharmacol 6:205

    PubMed  PubMed Central  Google Scholar 

  • Trivedi P, Adhikari N, Amin SA, Jha T, Ghosh B (2018) Design, synthesis and biological screening of 2-aminobenzamides as selective HDAC3 inhibitors with promising anticancer effects. Eur J Pharm Sci 124:165–181

    CAS  PubMed  Google Scholar 

  • Tsukamoto S, Sakae Y, Itoh Y, Suzuki T, Okamoto Y (2018) Computational analysis for selectivity of histone deacetylase inhibitor by replica-exchange umbrella sampling molecular dynamics simulations. J Chem Phys 148:125102

    PubMed  Google Scholar 

  • Tu B, Zhang M, Liu T, Huang Y (2020) Nanotechnology-based histone deacetylase inhibitors for cancer therapy. Front Cell Dev Biol 8

    Google Scholar 

  • Vansteenkiste J, Van Cutsem E, Dumez H, Chen C, Ricker JL, Randolph SS, Schöffski P (2008) Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Investig New Drugs 26:483–488

    CAS  Google Scholar 

  • Vergani B, Sandrone G, Marchini M, Ripamonti C, Cellupica E, Galbiati E, Caprini G, Pavich G, Porro G, Rocchio I, Lattanzio M, Pezzuto M, Skorupska M, Cordella P, Pagani P, Pozzi P, Pomarico R, Modena D, Leoni F, Perego R, Fossati G, Steinkühler C, Stevenazzi A (2019) Novel benzohydroxamate-based potent and selective histone deacetylase 6 (HDAC6) inhibitors bearing a pentaheterocyclic scaffold: design, synthesis, and biological evaluation. J Med Chem 62:10711–10739

    CAS  PubMed  Google Scholar 

  • Vögerl K, Ong N, Senger J, Herp D, Schmidtkunz K, Marek M, Müller M, Bartel K, Shaik TB, Porter NJ, Robaa D, Christianson DW, Romier C, Sippl W, Jung M, Bracher F (2019) Synthesis and biological investigation of phenothiazine-based benzhydroxamic acids as selective histone deacetylase 6 inhibitors. J Med Chem 62:1138–1166

    PubMed  PubMed Central  Google Scholar 

  • Wagner FF, Olson DE, Gale JP, Kaya T, Weïwer M, Aidoud N, Thomas M, Davoine EL, Lemercier BC, Zhang Y-L, Holson EB (2013) Potent and selective inhibition of histone deacetylase 6 (HDAC6) does not require a surface-binding motif. J Med Chem 56:1772–1776

    CAS  PubMed  Google Scholar 

  • Wagner FF, Zhang YL, Fass DM, Joseph N, Gale JP, Weïwer M, McCarren P, Fisher SL, Kaya T, Zhao WN, Reis SA, Hennig KM, Thomas M, Lemercier BC, Lewis MC, Guan JS, Moyer MP, Scolnick E, Haggarty SJ, Tsai LH, Holson EB (2015) Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chem Sci 6:804–815

    CAS  PubMed  Google Scholar 

  • Wang X-Q, Bai H-M, Li S-T, Sun H, Min L-Z, Tao B-B, Zhong J, Li B (2017) Knockdown of HDAC1 expression suppresses invasion and induces apoptosis in glioma cells. Oncotarget 8

    Google Scholar 

  • Wang D, Li W, Zhao R, Chen L, Liu N, Tian Y, Zhao H, Xie M, Lu F, Fang Q, Liang W, Yin F, Li Z (2019) Stabilized peptide HDAC inhibitors derived from HDAC1 substrate H3K56 for the treatment of cancer stem-like cells in vivo. Cancer Res 79(8):canres.1421.2018

    Google Scholar 

  • Watson PJ, Millard CJ, Riley AM, Robertson NS, Wright LC, Godage HY, Cowley SM, Jamieson AG, Potter BVL, Schwabe JWR (2016) Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat Commun 7:11262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woyach JA, Kloos RT, Ringel MD, Arbogast D, Collamore M, Zwiebel JA, Grever M, Villalona-Calero M, Shah MH (2009) Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma. J Clin Endocrinol Metab 94:164–170

    CAS  PubMed  Google Scholar 

  • Yang F, Zhao N, Ge D, Chen Y (2019) Next-generation of selective histone deacetylase inhibitors. RSC Adv 9:19571–19583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Zhao N, Hu Y, Jiang C-S, Zhang H (2020) The development process: from SAHA to hydroxamate HDAC inhibitors with branched CAP region and linear linker. Chem Biodivers 17:e1900427

    CAS  PubMed  Google Scholar 

  • Zhang M, Liu E, Cui Y, Huang Y (2017) Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med 14:212–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang J, Jiang Q, Zhang L, Song W (2018) Zinc binding groups for histone deacetylase inhibitors. J Enzyme Inhib Med Chem 33:714–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ying JB, Hong JJ, Li FC, Fu TT, Yang FY, Zheng GX, Yao XJ, Lou Y, Qiu Y, Xue WW, Zhu F (2019) How does chirality determine the selective inhibition of histone deacetylase 6? A lesson from trichostatin A enantiomers based on molecular dynamics. ACS Chem Neurosci 10:2467–2480

    CAS  PubMed  Google Scholar 

  • Zhang M, Ying JB, Wang SS, He D, Zhu H, Zhang C, Tang L, Lin R, Zhang Y (2020) Exploring the binding mechanism of HDAC8 selective inhibitors: lessons from the modification of Cap group. J Cell Biochem 121:3162–3172

    CAS  PubMed  Google Scholar 

  • Zhou J, Li M, Chen N, Wang S, Luo H-B, Zhang Y, Wu R (2015) Computational design of a time-dependent histone deacetylase 2 selective inhibitor. ACS Chem Biol 10:687–692

    CAS  PubMed  Google Scholar 

  • Zimmermann GR, Lehár J, Keith CT (2007) Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 12:34–42

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganai, S.A. (2020). Futuristic Approaches Towards Designing of Isozyme-Selective Histone Deacetylase Inhibitors Against Zinc-Dependent Histone Deacetylases. In: Histone Deacetylase Inhibitors in Combinatorial Anticancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-8179-3_11

Download citation

Publish with us

Policies and ethics