Skip to main content

In-Process Digital Monitoring of Additive Manufacturing: Proposed Machine Learning Approach and Potential Implications on Sustainability

  • Conference paper
  • First Online:
Sustainable Design and Manufacturing 2020

Abstract

Additive Manufacturing (AM) technologies have recently gained significance amongst industries as well as everyday consumers. This is largely due to the benefits that they offer in terms of design freedom, lead-time reduction, mass-customization as well as potential sustainability improvements due to efficiency in resource usage. However, conventional manufacturing industries are reluctant to integrate AM within their established process chains due to the unpredictability of the process and the quality of the final parts that are printed. Conventional manufacturing process have the advantage of decades of research in developing process knowledge and optimization, which culminates in accurate process predictability. This gap in process understanding is one that AM will need to cover in a short time. AM does have the benefit of being a digital manufacturing process and with the adoption of advanced Artificial Intelligence (AI) and Machine Learning (ML) techniques in production lines, there may not have been a better industrial age for its implementation. This paper presents a case for actively developing AM processes using ML. Then a method for in-process monitoring of the printing process is presented and discussed. The main benefit from using the proposed system is an increase in the efficiency and final quality of the parts printed, as a result of which there is an increased efficiency in resource usage due to preventing material loss due to failed builds and defected parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arumugam, D., Lee, J.K., Saskin, S., Littman, M.L.: %T Deep reinforcement learning from policy-dependent human feedback. (2019). ArXiv abs/1902.04257

    Google Scholar 

  2. Böckin, D., Tillman, A.-M.: Environmental assessment of additive manufacturing in the automotive industry. J. Cleaner Prod. 226, 977–987 (2019). https://doi.org/10.1016/j.jclepro.2019.04.086

    Article  Google Scholar 

  3. Carvalho, N., Chaim, O., Cazarini, E., Gerolamo, M.: Manufacturing in the fourth industrial revolution: A positive prospect in Sustainable Manufacturing. Procedia Manuf. 21, 671–678 (2018). https://doi.org/10.1016/j.promfg.2018.02.170

    Article  Google Scholar 

  4. Charles, A., Elkaseer, A., Thijs, L., Hagenmeyer, V., Scholz, S.: Effect of process parameters on the generated surface roughness of down-facing surfaces in selective laser melting. Appl. Sci. 9(6), 1256 (2019). https://doi.org/10.3390/app9061256

    Article  Google Scholar 

  5. Charles, A., Elkaseer, A., Thijs, L., Scholz, S.G.: Dimensional errors due to overhanging features in laser powder bed fusion parts made of Ti-6Al-4 V. Appl. Sci. 10(7), 2416 (2020)

    Article  Google Scholar 

  6. Christiano, P.F., Leike, J., Brown, T.B., Martic, M., Legg, S., Amodei, D.: Deep reinforcement learning from human preferences. In: NIPS (2017)

    Google Scholar 

  7. Dilberoglu, U.M., Gharehpapagh, B., Yaman, U., Dolen, M.: The role of additive manufacturing in the era of industry 4.0. Procedia Manuf. 11, 545–554 (2017). https://doi.org/10.1016/j.promfg.2017.07.148

    Article  Google Scholar 

  8. Elkaseer, A., Mueller, T., Charles, A., Scholz, S.: Digital detection and correction of errors in as-built parts: a step towards automated quality control of additive manufacturing. In: Proceedings WCMNM, Portorož, Slovenia 2018, pp. 389–392. Research Publishing Services, Singapore (2018). https://doi.org/10.3850/978-981-11-2728-1_58

  9. Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K., Clare, A.T.: Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 95, 431–445 (2016). https://doi.org/10.1016/j.matdes.2016.01.099

    Article  Google Scholar 

  10. Fassi, I., Shipley, D.: In: Micro-Manufacturing Technologies and their Applications. Springer Tracts in Mechanical Engineering, 1st edn. Springer, Cham (2017)

    Google Scholar 

  11. Gibson, I., Rosen, D.W., Stucker, B.: Generalized additive manufacturing process chain. In: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, pp. 59–77. Springer US, Boston, MA, (2010). https://doi.org/10.1007/978-1-4419-1120-9_3

  12. Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), 5–8 Jan. 2016, pp. 3928-3937. (2016). https://doi.org/10.1109/hicss.2016.488

  13. Jetson, N.: Jetson nano developer kit (2019)

    Google Scholar 

  14. Jetsonhacks: (2019). https://github.com/jetsonhacks Last Access 17/6/2019

  15. MacGlashan, J, Ho, M.K., Loftin, R., Peng, B., Wang, G., Roberts, D.L., Taylor, M.E., Littman, M.L.: Interactive learning from policy-dependent human feedback. In: Paper presented at the Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, (2017)

    Google Scholar 

  16. Mies, D., Marsden, W., Warde, S.: Overview of additive manufacturing informatics: a digital thread. Integr. Mater. Manuf. Innov. 5, 114–142 (2016). https://doi.org/10.1186/s40192-016-0050-7

    Article  Google Scholar 

  17. Moshiri, M., Charles, A., Elkaseer, A., Scholz, S., Mohanty, S., Tosello, G.: An industry 4.0 framework for tooling production using metal additive manufacturing-based first-time-right smart manufacturing system. Procedia CIRP 00, 000–000 (2020)

    Google Scholar 

  18. Niaki, M.K., Torabi, S.A., Nonino, F.: Why manufacturers adopt additive manufacturing technologies: The role of sustainability. J. Cleaner Prod. 222, 381–392 (2019). https://doi.org/10.1016/j.jclepro.2019.03.019

    Article  Google Scholar 

  19. Ă–zel, T., Altay, A.: Process monitoring of meltpool and spatter for temporal-spatial modeling of laser powder bed fusion process (2018). 10.1016/j.procir.2018.08.049

    Google Scholar 

  20. Paritala, P.K., Manchikatla, S., Yarlagadda, P.K.D.V.: Digital Manufacturing applications past current and future trends. Procedia Eng. 174, 982–991 (2017). https://doi.org/10.1016/j.proeng.2017.01.250

    Article  Google Scholar 

  21. Solheid, J., Elkaseer, A., Wunsch, T., Charles, A., Seifert, H., Pfleging, W.: Effect of process parameters on surface texture generated by laser polishing of additively manufactured Ti-6Al-4V, vol. 11268. SPIE LASE, SPIE (2020)

    Google Scholar 

  22. Spears, T.G., Gold, S.A.: In-process sensing in selective laser melting (SLM) additive manufacturing. Integr. Mater. Manuf. Innov. 5(1), 16–40 (2016). https://doi.org/10.1186/s40192-016-0045-4

    Article  Google Scholar 

  23. Tapia, G., Elwany, A.: A Review on process monitoring and control in metal-based additive manufacturing, 136, (2014). https://doi.org/10.1115/1.4028540

  24. Zezulka, F., Marcon, P., Vesely, I., Sajdl, O.: Industry 4.0—an Introduction in the phenomenon. IFAC-PapersOnLine 49(25), 8–12 (2016). https://doi.org/10.1016/j.ifacol.2016.12.002

    Article  Google Scholar 

Download references

Acknowledgements

This work was implemented under the STN programme, part of the Helmholtz association. In addition, the support of the Karlsruhe Nano Micro Facility (KNMF-LMP, http://www.knmf.kit.edu/) a Helmholtz research infrastructure at KIT, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Charles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Charles, A., Salem, M., Moshiri, M., Elkaseer, A., Scholz, S.G. (2021). In-Process Digital Monitoring of Additive Manufacturing: Proposed Machine Learning Approach and Potential Implications on Sustainability. In: Scholz, S.G., Howlett, R.J., Setchi, R. (eds) Sustainable Design and Manufacturing 2020. Smart Innovation, Systems and Technologies, vol 200. Springer, Singapore. https://doi.org/10.1007/978-981-15-8131-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8131-1_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8130-4

  • Online ISBN: 978-981-15-8131-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics