Skip to main content

Medicinal Plants: A Rich Source of Bioactive Molecules Used in Drug Development

  • Chapter
  • First Online:
Evidence Based Validation of Traditional Medicines

Abstract

Medicinal plants are a rich repository of various biologically active molecules that have various pharmacological effects in mammals. The majority of the world’s population (around 60–80%) still rely on the traditional medicinal method to treat common illnesses. In addition, finding a plant-derived antioxidant, which scavenges reactive oxygen species (ROS), has become a central focus of drug development research. The increment in oxidative stress and impaired cellular redox homeostasis due to elevated ROS lead to age-related diseases, including type 2 diabetes, cancer, and neurodegenerative disorders. Although drugs of plant extraction origin are available to prevent these age-related disorders, living cells have various defense mechanisms to prevent the harmful effects of ROS generation. Antioxidant enzymes neutralize free radicals and help the cell to overcome stress. Phytomolecules having antioxidative properties can help in stress modulation by scavenging ROS. This book chapter summarizes how bioactive molecules can be utilized as a tool for screening plant extract/bioactive molecules of natural origin and advance our understanding of molecular mechanisms of drug action and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

C. elegans :

Caenorhabditis elegans

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

MAPs:

Medicinal and aromatic plants

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

References

  • Abuajah CI, Ogbonna AC, Osuji CM (2015) Functional components and medicinal properties of food: a review. J Food Sci Technol 52(5):2522–2529

    Article  CAS  PubMed  Google Scholar 

  • Ahmad F, Leake DS (2018) Antioxidants inhibit low density lipoprotein oxidation less at lysosomal pH: a possible explanation as to why the clinical trials of antioxidants might have failed. Chem Phys Lipids 213:13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhter F, Alvi SS, Ahmad P, Iqbal D, Alshehri BM, Khan MS (2019) Therapeutic efficacy of Boerhaavia diffusa (Linn.) root methanolic extract in attenuating streptozotocin-induced diabetes, diabetes-linked hyperlipidemia and oxidative-stress in rats. Biomed Res Ther 6(7):3293–3306

    Article  Google Scholar 

  • Argyropoulou A, Aligiannis N, Trougakos IP, Skaltsounis AL (2013) Natural compounds with anti-ageing activity. Nat Prod Rep 30(11):1412–1437

    Article  CAS  PubMed  Google Scholar 

  • Asthana J, Pant A, Yadav D, Lal RK, Gupta MM, Pandey R (2015) Ocimum basilicum (L.) and Premna integrifolia (L.) modulate stress response and lifespan in Caenorhabditis elegans. Ind Crop Prod 76:1086–1093

    Article  Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Rollinger JM (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahadoran Z, Mirmiran P, Azizi F (2013) Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 12(1):43

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bär C, Blasco MA (2016) Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases. F1000 Res 5:89

    Article  Google Scholar 

  • Bhandari PR, Kamdod MA (2012) Emblica officinalis (Amla): a review of potential therapeutic applications. Int J Green Pharm 6(4):257–269

    Article  Google Scholar 

  • Blagosklonny MV, Hall MN (2009) Growth and aging: a common molecular mechanism. Aging 1(4):357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brites F, Martin M, Guillas I, Kontush A (2017) Antioxidative activity of high-density lipoprotein (HDL): mechanistic insights into potential clinical benefit. BBA Clin 8:66–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulla LA, Cheng TC (2013) Invertebrate models for biomedical research, vol 4. Springer Science & Business Media, Berlin

    Google Scholar 

  • Carmona JJ, Michan S (2016) Biology of healthy aging and longevity. Rev Investig Clin 68(1):7–16

    CAS  Google Scholar 

  • Carretero M, Gomez-Amaro RL, Petrascheck M (2015) Pharmacological classes that extend lifespan of Caenorhabditis elegans. Front Genet 6:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng YC, Sheen JM, Hu WL, Hung YC (2017) Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid Med Cell Longev 2017:8526438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chugh NA, Bali S, Koul A (2018) Integration of botanicals in contemporary medicine: road blocks, checkpoints and go-ahead signals. Integrat Med Res 7(2):109–125

    Article  Google Scholar 

  • Cipolletti M, Solar Fernandez V, Montalesi E, Marino M, Fiocchetti M (2018) Beyond the antioxidant activity of dietary polyphenols in cancer: the modulation of estrogen receptors (ers) signaling. Int J Mol Sci 19(9):2624

    Article  PubMed Central  CAS  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Meta 2(2):303–336

    CAS  Google Scholar 

  • Durães F, Pinto M, Sousa E (2018) Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals 11(2):44

    Article  PubMed Central  CAS  Google Scholar 

  • Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A (2016) The potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci 17(2):160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ergen N, Coşkun SH, Orhan DD, Aslan M, Sezik E, Atalay A (2018) Evaluation of the lifespan extension effects of several Turkish medicinal plants in Caenorhabditis elegans. Turk J Biol 42(2):163–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg C (2017) Molecular mechanisms of skin photoaging and plant inhibitors. Int J Green Pharm 11(02):S217–S232

    CAS  Google Scholar 

  • Garg P, Sardana S (2016) Pharmacological and therapeutic effects of Ocimum sanctum. Eur J Pharm Med Res 3(8):637–640

    Google Scholar 

  • Giacomotto J, Ségalat L (2010) High-throughput screening and small animal models, where are we? Br J Pharmacol 160(2):204–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunathilake KDPP, Rupasinghe H (2015) Recent perspectives on the medicinal potential of ginger. Bot Targets Ther 5:55–63

    Google Scholar 

  • Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Asp Med 27(1):1–93

    Article  CAS  Google Scholar 

  • Gutiérrez-Grijalva EP, Picos-Salas MA, Leyva-López N, Criollo-Mendoza MS, Vazquez-Olivo G, Heredia JB (2018) Flavonoids and phenolic acids from oregano: occurrence, biological activity and health benefits. Plants 7(1):2

    Article  CAS  Google Scholar 

  • Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13(19–20):894–901

    Article  CAS  PubMed  Google Scholar 

  • Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alex J Med 54(4):287–293

    Google Scholar 

  • Ishtiyaq A, Alam A, Siddiqui JI, Kazmi MH (2019) Therapeutic potential of widely used unani drug asl-us-soos (Glycyrrhiza glabra Linn.): a systematic review. J Drug Deliv Ther 9(4-s):765–773

    Article  CAS  Google Scholar 

  • Ji HF, Li XJ, Zhang HY (2009) Natural products and drug discovery. EMBO Rep 10(3):194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SC (2018) Nutrient sensing, signaling and ageing: the role of IGF-1 and mTOR in ageing and age-related disease. Subcell Biochem 90:49–97

    Article  CAS  PubMed  Google Scholar 

  • Karimi A, Majlesi M, Rafieian-Kopaei M (2015) Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 4(1):27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katz DL, Meller S (2014) Can we say what diet is best for health? Annu Rev Public Health 35:83–103

    Article  CAS  PubMed  Google Scholar 

  • Kaur A (2018) Pharmacobotanical and pharmacological evaluation of ayurvedic crude drug: Rauwolfia serpentina (Apocynaceae). Int J Green Pharm 11(04):S686–S693

    Google Scholar 

  • Kennedy DO, Wightman EL (2011) Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr 2(1):32–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512

    Article  CAS  PubMed  Google Scholar 

  • Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC (2013) Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 5(10):3779–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kompelly A, Kompelly S, Vasudha B, Narender B (2019) Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. J Drug Deliv Ther 9(1):323–330

    Article  CAS  Google Scholar 

  • Koparde AA, Doijad RC, Magdum CS (2019) Natural products in drug discovery. In: Pharmacognosy-medicinal plants. IntechOpen, Croatia

    Google Scholar 

  • Kurutas EB (2015) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15(1):71

    Article  CAS  Google Scholar 

  • Lahlou M (2013) The success of natural products in drug discovery. Pharmacol Pharm 4:17–31

    Article  Google Scholar 

  • Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12(1):2694–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonov A, Arlia-Ciommo A, Piano A, Svistkova V, Lutchman V, Medkour Y, Titorenko VI (2015) Longevity extension by phytochemicals. Molecules 20(4):6544–6572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li FS, Weng JK (2017) Demystifying traditional herbal medicine with modern approach. Nat Plants 3(8):1–7

    Article  Google Scholar 

  • Lublin AL, Link CD (2013) Alzheimer’s disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for β-amyloid peptide-induced toxicity. Drug Discov Today Technol 10(1):e115–e119

    Article  CAS  PubMed  Google Scholar 

  • Luo Y (2001) Ginkgo biloba neuroprotection: therapeutic implications in Alzheimer’s disease. J Alzheimers Dis 3(4):401–407

    Article  CAS  PubMed  Google Scholar 

  • Madan K, Nanda S (2018) In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bioorg Chem 77:159–167

    Article  CAS  PubMed  Google Scholar 

  • Mali PY (2016) Pharmacological potentials of Premna integrifolia L. Anc Sci Life 35(3):132

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandal A, Reddy JM (2017) A review on potential therapeutic uses of Withania somnifera. World J Pharm Res 6:846–860

    Article  CAS  Google Scholar 

  • Moutia M, Habti N, Badou A (2018) In vitro and in vivo immunomodulator activities of Allium sativum L. Evid Based Complement Alternat Med 2018:1

    Article  Google Scholar 

  • Mukhopadhyay P, Prajapati AK (2015) Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers–a review. RSC Adv 5(118):97547–97562

    Article  CAS  Google Scholar 

  • Nasri H, Baradaran A, Shirzad H, Rafieian-Kopaei M (2014) New concepts in nutraceuticals as alternative for pharmaceuticals. Int J Prevent Med 5(12):1487

    Google Scholar 

  • National Research Council (2000) Using model animals to assess and understand developmental toxicity. In: Scientific frontiers in developmental toxicology and risk assessment. National Academies, Washington DC

    Google Scholar 

  • Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016:1

    Article  CAS  Google Scholar 

  • Nuhu AA, Abdulrazak S, Yashim ZI (2017) Gingko biloba leaf extract mitigates Chlorpyrifos-induced oxidative stress in albino rats. Asian J Med Pharm Res 7(4):42–47

    Google Scholar 

  • Oyebode O, Kandala NB, Chilton PJ, &Lilford RJ (2016) Use of traditional medicine in middle-income countries: a WHO-SAGE study. Health Policy Plan, 31(8), pp. 984–991

    Google Scholar 

  • Pan SY, Zhou SF, Gao SH, Yu ZL, Zhang SF, Tang MK, Ko KM (2013, 2013) New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evidence-Based Complementary and Alternative Medicine:1–26

    Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda AK, Chakraborty D, Sarkar I, Khan T, Sa G (2017) New insights into therapeutic activity and anticancer properties of curcumin. J Exp Pharmacol 9:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278

    Article  Google Scholar 

  • Pandey MM, Rastogi S, Rawat AKS (2013) Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid Based Complement Alternat Med 2013:1

    Google Scholar 

  • Pant A, Pandey R (2015) Bioactive phytomolecules and aging in Caenorhabditis elegans. Healthy Aging Res 4:1–15

    Google Scholar 

  • Patrícia B, Pereira A, SM Group Open Access eBooks (2017) Impact and prevention of neurodegenerative diseases in society: Alzheimer and Parkinson. Neurodegenerative diseases. SM Group Open Access eBooks

    Google Scholar 

  • Patwardhan B, Mashelkar RA (2009) Traditional medicine-inspired approaches to drug discovery: can Ayurveda show the way forward? Drug Discov Today 14(15–16):804–811

    Article  PubMed  Google Scholar 

  • Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharm Rev 6(11):1

    Google Scholar 

  • Pohl F, KongThoo Lin P (2018) The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical trials. Molecules 23(12):3283

    Article  PubMed Central  CAS  Google Scholar 

  • Pomatto LC, Davies KJ (2017) The role of declining adaptive homeostasis in ageing. J Physiol 595(24):7275–7309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathor L, Pandey R (2018) Age-induced diminution of free radicals by Boeravinone B in Caenorhabditis elegans. Exp Gerontol 111:94–106

    Article  CAS  PubMed  Google Scholar 

  • Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA (2018) Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol 9:586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selvaraj K, Sivakumar G, Veeraraghavan VP, Dandannavar VS, Veeraraghavan GR, Rengasamy G (2019) Asparagus Racemosus-a review. Syst Rev Phar 10(1):87–89

    CAS  Google Scholar 

  • Sen S, Chakraborty R (2017) Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: importance, challenges and future. J Tradit Complement Med 7(2):234–244

    Article  PubMed  Google Scholar 

  • Shammas MA (2011) Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care 14(1):28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shilsky J, Bloom DE, Beaudreault AR, Tucker KL, Keller HH, Freund-Levi Y, Meydani SN (2017) Nutritional considerations for healthy aging and reduction in age-related chronic disease. Adv Nutr 8(1):17–26

    Google Scholar 

  • Siddiqui MZ (2011) Boswellia serrata, a potential antiinflammatory agent: an overview. Indian J Pharm Sci 73(3):255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Geetanjali (2016) Asparagus racemosus: a review on its phytochemical and therapeutic potential. Nat Prod Res 30(17):1896–1908

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh S, Prasad SM (2016) Role of medicinal plants for health perspective: special reference to antioxidant potential. J Chem Biol Ther 1(2):106

    Article  Google Scholar 

  • Srivastava S (2017) The mitochondrial basis of aging and age-related disorders. Genes 8(12):398

    Article  PubMed Central  CAS  Google Scholar 

  • Takshak S, Agrawal SB (2019) Defense potential of secondary metabolites in medicinal plants under UV-B stress. J Photochem Photobiol B Biol 193:51–88

    Article  CAS  Google Scholar 

  • Tan BL, Norhaizan ME, Winnie-Pui-PuiLiew HS (2018) Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 9:1162

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomford N, Senthebane D, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19(6):1578

    Article  PubMed Central  CAS  Google Scholar 

  • Tissenbaum HA (2015) Using C. elegans for aging research. Invertebr Reprod Develop 59(Suppl 1):59–63

    Article  Google Scholar 

  • Topp R, Fahlman M, Boardley D (2004) Healthy aging: health promotion and disease prevention. Nurs Clin North Am 39(2):411–422

    Article  PubMed  Google Scholar 

  • Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2(12):1231–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines 5(3):93

    Article  CAS  PubMed Central  Google Scholar 

  • Umeno A, Horie M, Murotomi K, Nakajima Y, Yoshida Y (2016) Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 21(6):708

    Article  PubMed Central  CAS  Google Scholar 

  • Upadhyay RK (2017) Therapeutic and pharmaceutical potential of Cinnamomum tamala. Pharm Pharm Sci 6(3):18–28

    Google Scholar 

  • Upadhyay S, Dixit M (2015) Role of polyphenols and other phytochemicals on molecular signaling. Oxid Med Cell Longev 2015:1

    Article  Google Scholar 

  • Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3(4):200–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma SK, Kumar A (2011) Therapeutic uses of Withania somnifera (ashwagandha) with a note on withanolides and its pharmacological actions. Asian J Pharm Clin Res 4(1):1–4

    CAS  Google Scholar 

  • Wang SY (2002) Antioxidant capacity of berry crops, culinary herbs and medicinal herbs. In XXVI International Horticultural Congress: Asian Plants with Unique Horticultural Potential: Genetic Resources, Cultural, vol 620, pp. 461–473

    Google Scholar 

  • Wang H, OoKhor T, Shu L, Su ZY, Fuentes F, Lee JH, Tony Kong AN (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti Cancer Agents Med Chem 12(10):1281–1305

    Article  CAS  Google Scholar 

  • Welz AN, Emberger-Klein A, Menrad K (2018) Why people use herbal medicine: insights from a focus-group study in Germany. BMC Complement Alternat Med 18(1):92

    Article  Google Scholar 

  • Wilson D, Nash P, Buttar H, Griffiths K, Singh R, De Meester F, Takahashi T (2017) The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: an overview. Antioxidants 6(4):81

    Article  PubMed Central  CAS  Google Scholar 

  • Yin SY, Wei WC, Jian FY, Yang NS (2013) Therapeutic applications of herbal medicines for cancer patients. Evid Based Complement Alternat Med 2013:1

    Google Scholar 

  • Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21(5):559

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang L, Reddy N (2018) Bioactive molecules from medicinal herbs for life threatening diseases. J Mol Sci 2(1):4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laxmi Rathor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rathor, L. (2021). Medicinal Plants: A Rich Source of Bioactive Molecules Used in Drug Development. In: Mandal, S.C., Chakraborty, R., Sen, S. (eds) Evidence Based Validation of Traditional Medicines. Springer, Singapore. https://doi.org/10.1007/978-981-15-8127-4_10

Download citation

Publish with us

Policies and ethics