Skip to main content

Objective Quantitative Evaluation of Angle Closure

  • Chapter
  • First Online:
Primary Angle Closure Glaucoma (PACG)
  • 429 Accesses

Abstract

Several limitations have been encountered with the reference standard of gonioscopy for angle assessment. Advancements in ophthalmic imaging technologies, especially anterior segment optical coherence tomography (AS-OCT) in recent years, have established robust, reliable, and quantitative protocols to examine the structure of the anterior segment with proven usefulness to detect various ocular complications including angle closure. The goal of this chapter is to review the basics of the most commonly used anterior segment imaging techniques (ultrasound biomicroscopy and AS-OCT), including a concise update of how they work and how objective and quantitative evaluation can be conducted in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238–42.

    Article  Google Scholar 

  2. George R, et al. Ocular biometry in occludable angles and angle closure glaucoma: a population based survey. Br J Ophthalmol. 2003;87:399–402.

    Article  CAS  Google Scholar 

  3. Liu L. Deconstructing the mechanisms of angle closure with anterior segment optical coherence tomography. Clin Exp Ophthalmol. 2011;39:614–22. https://doi.org/10.1111/j.1442-9071.2011.02521.x.

    Article  PubMed  Google Scholar 

  4. Wylegala E, Teper S, Nowinska AK, Milka M, Dobrowolski D. Anterior segment imaging: fourier-domain optical coherence tomography versus time-domain optical coherence tomography. J Cataract Refract Surg. 2009;35:1410–4. https://doi.org/10.1016/j.jcrs.2009.03.034.

    Article  PubMed  Google Scholar 

  5. Cheung CY, et al. Factors associated with long-term intraocular pressure fluctuation in primary angle closure disease: the CUHK PACG longitudinal (CUPAL) study. J Glaucoma. 2018;27:703–10. https://doi.org/10.1097/IJG.0000000000000996.

    Article  PubMed  Google Scholar 

  6. Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991;98:287–95.

    Article  CAS  Google Scholar 

  7. Pavlin CJ, Sherar MD, Foster FS. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology. 1990;97:244–50.

    Article  CAS  Google Scholar 

  8. Barkana Y, Dorairaj SK, Gerber Y, Liebmann JM, Ritch R. Agreement between gonioscopy and ultrasound biomicroscopy in detecting iridotrabecular apposition. Arch Ophthalmol. 2007;125:1331–5. https://doi.org/10.1001/archopht.125.10.1331.

    Article  PubMed  Google Scholar 

  9. Pavlin CJ, Harasiewicz K, Foster FS. Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. Am J Ophthalmol. 1992;113:381–9.

    Article  CAS  Google Scholar 

  10. Urbak SF, Pedersen JK, Thorsen TT. Ultrasound biomicroscopy. II. Intraobserver and interobserver reproducibility of measurements. Acta Ophthalmol Scand. 1998;76:546–9.

    Article  CAS  Google Scholar 

  11. Tello C, Liebmann J, Potash SD, Cohen H, Ritch R. Measurement of ultrasound biomicroscopy images: intraobserver and interobserver reliability. Invest Ophthalmol Vis Sci. 1994;35:3549–52.

    CAS  PubMed  Google Scholar 

  12. Zhang Q, Jin W, Wang Q. Repeatability, reproducibility, and agreement of central anterior chamber depth measurements in pseudophakic and phakic eyes: optical coherence tomography versus ultrasound biomicroscopy. J Cataract Refract Surg. 2010;36:941–6. https://doi.org/10.1016/j.jcrs.2009.12.038.

    Article  PubMed  Google Scholar 

  13. Dada T, Sihota R, Gadia R, Aggarwal A, Mandal S, Gupta V. Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for assessment of the anterior segment. J Cataract Refract Surg. 2007;33:837–40. https://doi.org/10.1016/j.jcrs.2007.01.021.

    Article  PubMed  Google Scholar 

  14. Memarzadeh F, Li Y, Chopra V, Varma R, Francis BA, Huang D. Anterior segment optical coherence tomography for imaging the anterior chamber after laser peripheral iridotomy. Am J Ophthalmol. 2007;143:877–9. https://doi.org/10.1016/j.ajo.2006.11.055.

    Article  PubMed  Google Scholar 

  15. Radhakrishnan S, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. Arch Ophthalmol. 2005;123:1053–9. https://doi.org/10.1001/archopht.123.8.1053.

    Article  PubMed  Google Scholar 

  16. Radhakrishnan S, Rollins AM, Roth JE, Yazdanfar S, Westphal V, Bardenstein DS, Izatt JA. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol. 2001;119:1179–85.

    Article  CAS  Google Scholar 

  17. Shabana N, et al. Quantitative evaluation of anterior chamber parameters using anterior segment optical coherence tomography in primary angle closure mechanisms. Clin Exp Ophthalmol. 2012;40:792–801. https://doi.org/10.1111/j.1442-9071.2012.02805.x.

    Article  PubMed  Google Scholar 

  18. Sng CC, et al. Determinants of anterior chamber depth: the Singapore Chinese eye study. Ophthalmology. 2012;119:1143–50. https://doi.org/10.1016/j.ophtha.2012.01.011.

    Article  PubMed  Google Scholar 

  19. Li P, Johnstone M, Wang RK. Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm. J Biomed Opt. 2014;19:046013. https://doi.org/10.1117/1.JBO.19.4.046013.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nongpiur ME, et al. Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology. 2011;118:474–9. https://doi.org/10.1016/j.ophtha.2010.07.025.

    Article  PubMed  Google Scholar 

  21. Nongpiur ME, et al. Novel association of smaller anterior chamber width with angle closure in Singaporeans. Ophthalmology. 2010;117:1967–73. https://doi.org/10.1016/j.ophtha.2010.02.007.

    Article  PubMed  Google Scholar 

  22. Moghimi S, et al. Ocular biometry in the subtypes of angle closure: an anterior segment optical coherence tomography study. Am J Ophthalmol. 2013;155:664–673, 673 e661. https://doi.org/10.1016/j.ajo.2012.10.014.

    Article  PubMed  Google Scholar 

  23. Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography – a review. Clin Exp Ophthalmol. 2009;37:81–9. https://doi.org/10.1111/j.1442-9071.2008.01823.x.

    Article  PubMed  Google Scholar 

  24. Rodrigues EB, Johanson M, Penha FM. Anterior segment tomography with the cirrus optical coherence tomography. J Ophthalmol. 2012;2012:806989. https://doi.org/10.1155/2012/806989.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu BY, Mai DD, Penteado RC, Saunders L, Weinreb RN. Reproducibility and agreement of anterior segment parameter measurements obtained using the CASIA2 and Spectralis OCT2 optical coherence tomography devices. J Glaucoma. 2017;26:974–9. https://doi.org/10.1097/IJG.0000000000000788.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cheung CY, et al. Novel anterior-chamber angle measurements by high-definition optical coherence tomography using the Schwalbe line as the landmark. Br J Ophthalmol. 2011;95:955–9. https://doi.org/10.1136/bjo.2010.189217.

    Article  PubMed  Google Scholar 

  27. Kagemann L, et al. Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:4054–9. https://doi.org/10.1167/iovs.09-4559.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fukuda S, Kawana K, Yasuno Y, Oshika T. Repeatability and reproducibility of anterior chamber volume measurements using 3-dimensional corneal and anterior segment optical coherence tomography. J Cataract Refract Surg. 2011;37:461–8. https://doi.org/10.1016/j.jcrs.2010.08.053.

    Article  PubMed  Google Scholar 

  29. Ishikawa H, Esaki K, Liebmann JM, Uji Y, Ritch R. Ultrasound biomicroscopy dark room provocative testing: a quantitative method for estimating anterior chamber angle width. Jpn J Ophthalmol. 1999;43:526–34.

    Article  CAS  Google Scholar 

  30. Sung KR, Lee KS, Hong JW. Baseline anterior segment parameters associated with the long-term outcome of laser peripheral Iridotomy. Curr Eye Res. 2015;40:1128–33. https://doi.org/10.3109/02713683.2014.986334.

    Article  PubMed  Google Scholar 

  31. Sakata LM, Lavanya R, Friedman DS, Aung HT, Seah SK, Foster PJ, Aung T. Assessment of the scleral spur in anterior segment optical coherence tomography images. Arch Ophthalmol. 2008b;126:181–5. https://doi.org/10.1001/archophthalmol.2007.46.

    Article  PubMed  Google Scholar 

  32. Wang BS, et al. Increased iris thickness and association with primary angle closure glaucoma. Br J Ophthalmol. 2011;95:46–50. https://doi.org/10.1136/bjo.2009.178129.

    Article  PubMed  Google Scholar 

  33. Lopes FS, Matsubara I, Almeida I, Dorairaj SK, Vessani RM, Paranhos A Jr, Prata TS. Structure-function relationships in glaucoma using enhanced depth imaging optical coherence tomography-derived parameters: a cross-sectional observational study. BMC Ophthalmol. 2019;19:52. https://doi.org/10.1186/s12886-019-1054-9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Day AC, et al. Spectral domain optical coherence tomography imaging of the aqueous outflow structures in normal participants of the EPIC-Norfolk eye study. Br J Ophthalmol. 2013;97:189–95. https://doi.org/10.1136/bjophthalmol-2012-302147.

    Article  PubMed  Google Scholar 

  35. Leung CK, et al. Novel approach for anterior chamber angle analysis: anterior chamber angle detection with edge measurement and identification algorithm (ACADEMIA). Arch Ophthalmol. 2006;124:1395–401. https://doi.org/10.1001/archopht.124.10.1395.

    Article  PubMed  Google Scholar 

  36. Li H, Leung CK, Cheung CY, Wong L, Pang CP, Weinreb RN, Lam DS. Repeatability and reproducibility of anterior chamber angle measurement with anterior segment optical coherence tomography. Br J Ophthalmol. 2007;91:1490–2. https://doi.org/10.1136/bjo.2007.118901.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sakata LM, et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology. 2008a;115:769–74. https://doi.org/10.1016/j.ophtha.2007.06.030.

    Article  PubMed  Google Scholar 

  38. Liu S, et al. Assessment of scleral spur visibility with anterior segment optical coherence tomography. J Glaucoma. 2010;19:132–5. https://doi.org/10.1097/IJG.0b013e3181a98ce4.

    Article  PubMed  Google Scholar 

  39. Seager FE, Wang J, Arora KS, Quigley HA. The effect of scleral spur identification methods on structural measurements by anterior segment optical coherence tomography. J Glaucoma. 2014;23:e29–38. https://doi.org/10.1097/IJG.0b013e31829e55ae.

    Article  PubMed  Google Scholar 

  40. Leung CK, et al. Dynamic analysis of dark-light changes of the anterior chamber angle with anterior segment OCT. Invest Ophthalmol Vis Sci. 2007;48:4116–22. https://doi.org/10.1167/iovs.07-0010.

    Article  PubMed  Google Scholar 

  41. Mak H, Xu G, Leung CK. Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. Ophthalmology. 2013;120:2517–24. https://doi.org/10.1016/j.ophtha.2013.05.009.

    Article  PubMed  Google Scholar 

  42. Baskaran M, Ho SW, Tun TA, How AC, Perera SA, Friedman DS, Aung T. Assessment of circumferential angle-closure by the iris-trabecular contact index with swept-source optical coherence tomography. Ophthalmology. 2013;120:2226–31. https://doi.org/10.1016/j.ophtha.2013.04.020.

    Article  PubMed  Google Scholar 

  43. Lai I, Mak H, Lai G, Yu M, Lam DS, Leung CK. Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma. Ophthalmology. 2013;120:1144–9. https://doi.org/10.1016/j.ophtha.2012.12.006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Prof. Clement C. Tham, Dr. Poemen Chan, and Ms. Annie Ling from the Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Y. Cheung .

Editor information

Editors and Affiliations

Ethics declarations

Carol Y. Cheung and Yu Meng Wang declare that they have no conflict of interest. No human or animal studies were performed by the authors for this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y.M., Cheung, C.Y. (2021). Objective Quantitative Evaluation of Angle Closure. In: Tham, C.C. (eds) Primary Angle Closure Glaucoma (PACG). Springer, Singapore. https://doi.org/10.1007/978-981-15-8120-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8120-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8119-9

  • Online ISBN: 978-981-15-8120-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics