Skip to main content

Intraocular Pressure Fluctuation in Angle Closure Glaucoma

  • Chapter
  • First Online:
Primary Angle Closure Glaucoma (PACG)

Abstract

Angle closure glaucoma tends to have a higher magnitude and greater fluctuation of intraocular pressure (IOP), and thus leading to more blindness. Primary angle closure glaucoma (PACG) has higher IOP than other subtypes of angle closure and the normal subjects. The presence of PAS usually correlates with high IOP. The characteristic of diurnal IOP varies among the different subtypes of angle closure disease, greatest in PACG and smallest in primary angle closure suspect. However, the diurnal IOP fluctuation does not always characterize well in the different subtypes of angle closure disease. Cataract surgery, glaucoma laser procedure, and trabeculectomy in angle closure eyes potentially offer an advantage in flattening diurnal IOP curve. Some literatures suggest that greater 24-h diurnal IOP is associated with disease progression in this glaucoma entity, however, the available data are still limited and controversial. Nevertheless, diurnal IOP is worth exploring in PACG individuals who show glaucoma progression despite a favorable clinic visit IOP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7. https://doi.org/10.1136/bjo.2005.081224.

  2. Friedman DS, Foster PJ, Aung T, He M. Angle closure and angle-closure glaucoma: what we are doing now and what we will be doing in the future. Clin Exp Ophthalmol. 2012;40(4):381–7. https://doi.org/10.1111/j.1442-9071.2012.02774.x.

  3. Cronemberger S, Lourenço LF, Silva LC, Calixto N, Pires MC. Prognosis of glaucoma in relation to blindness at a university hospital. Arq Bras Oftalmol. 2009;72(2):199–204. https://doi.org/10.1590/s0004-27492009000200013.

  4. Sihota R, et al. A comparison of the circadian rhythm of intraocular pressure in primary phronic angle closure glaucoma, primary open angle glaucoma and normal eyes. Indian J Ophthalmol. 2005;53:243–7. https://doi.org/10.4103/0301-4738.18905.

  5. Nonaka A, et al. Cataract surgery for residual angle closure after peripheral laser iridotomy. Ophthalmology. 2005;112:974–9. https://doi.org/10.1016/j.ophtha.2004.12.042.

  6. Lee KS, et al. Residual anterior chamber angle closure in narrow-angle eyes following laser peripheral iridotomy: anterior segment optical coherence tomography quantitative study. Jpn J Ophthalmol. 2011;55:213–9. https://doi.org/10.1007/s10384-011-0009-3.

  7. Sihota R, et al. The trabecular meshwork in acute and chronic angle closure glaucoma. Indian J Ophthalmol. 2001;49:255–9.

    Google Scholar 

  8. Medical Advisory S. Diurnal tension curves for assessing the development or progression of glaucoma: an evidence-based analysis. Ont Health Technol Assess Ser. 2011;11:1–40.

    Google Scholar 

  9. Bhartiya S, Ichhpujani P. Diurnal intraocular pressure fluctuation in eyes with angle-closure. J Curr Glaucoma Pract. 2015;9:20–3. https://doi.org/10.5005/jp-journals-10008-1178.

  10. Baskaran M, et al. Diurnal intraocular pressure fluctuation and associated risk factors in eyes with angle closure. Ophthalmology. 2009;116:2300–4. https://doi.org/10.1016/j.ophtha.2009.06.010.

  11. Srinivasan S, et al. Diurnal intraocular pressure fluctuation and its risk factors in angle-closure and open-angle glaucoma. Eye (Lond). 2016;30:362–8. https://doi.org/10.1038/eye.2015.231.

  12. Sanchez-Parra L, Pardhan S, Buckley RJ, Parker M, Bourne RR. Diurnal intraocular pressure and the relationship with swept-source OCT-derived anterior chamber dimensions in angle closure: the IMPACT study. Invest Ophthalmol Vis Sci. 2015;56:2943–9. https://doi.org/10.1167/iovs.14-15385.

  13. Park HS, et al. Diurnal intraocular pressure changes in eyes affected with acute primary angle closure and fellow eyes after laser peripheral iridotomy. Jpn J Ophthalmol. 2015;59:318–24. https://doi.org/10.1007/s10384-015-0399-8.

  14. Tan S, et al. Comparison of self-measured diurnal intraocular pressure profiles using rebound tonometry between primary angle closure glaucoma and primary open angle glaucoma patients. PLoS One. 2017;12:e0173905. https://doi.org/10.1371/journal.pone.0173905.

  15. Chen PP, et al. The effect of phacoemulsification on intraocular pressure in Glaucoma patients: a report by the American Academy of ophthalmology. Ophthalmology. 2015;122:1294–307. https://doi.org/10.1016/j.ophtha.2015.03.021.

  16. Seol BR, et al. Intraocular pressure (IOP) change and frequency of IOP spike after cataract surgery in Normal-tension Glaucoma: a case-control Study. J Glaucoma. 2019;28:201–6. https://doi.org/10.1097/IJG.0000000000001172.

  17. Azuara-blanco A, Burr J, Ramsay C, et al. Effectiveness of early lens extraction for the treatment of primary angle-closure glaucoma (EAGLE): a randomised controlled trial. Lancet. 2016;388:1389–97.

    Google Scholar 

  18. Kim KS, Kim JM, Park KH, Choi CY, Chang HR. The effect of cataract surgery on diurnal intraocular pressure fluctuation. J Glaucoma. 2009;18:399–402. https://doi.org/10.1097/IJG.0b013e3181879e89.

  19. Tojo N, Otsuka M, Hayashi A. Comparison of intraocular pressure fluctuation before and after cataract surgeries in normal-tension glaucoma patients. Eur J Ophthalmol. 2019;29:516–23. https://doi.org/10.1177/1120672118801163.

  20. Rao A. Diurnal curve after phacoemulsification in patients with pseudoexfoliation syndrome and cataract. Semin Ophthalmol. 2012;27:1–5. https://doi.org/10.3109/08820538.2011.626356.

  21. Vahedian Z, et al. Pseudoexfoliation syndrome: effect of phacoemulsification on intraocular pressure and its diurnal variation. J Curr Ophthalmol. 2015;27:12–5. https://doi.org/10.1016/j.joco.2015.09.006.

  22. Kim WJ, Kim JM, Kim KN, Kim CS. Effect of preoperative factor on intraocular pressure after phacoemulsification in primary open-angle Glaucoma and primary angle-closure Glaucoma. Kor J Ophthalmol: KJO. 2019;33(4):303–14. https://doi.org/10.3341/kjo.2018.0135.

  23. Azuara-Blanco A, Burr J, Ramsay C, Cooper D, Foster PJ, Friedman DS, Scotland G, Javanbakht M, Cochrane C, Norrie J, EAGLE Study Group. Effectiveness of early lens extraction for the treatment of primary angle-closure glaucoma (EAGLE): a randomised controlled trial. Lancet (London, England). 2016;388(10052):1389–97. https://doi.org/10.1016/S0140-6736(16)30956-4.

  24. Gunning FP, Greve EL. Uncontrolled primary angle closure glaucoma: results of early intercapsular cataract extraction and posterior chamber lens implantation. Int Ophthalmol. 1991;15(4):237–47. https://doi.org/10.1007/bf00171026.

  25. Gunning FP, Greve EL. Lens extraction for uncontrolled angle-closure glaucoma: long-term follow-up. J Cataract Refract Surg. 1998;24(10):1347–56. https://doi.org/10.1016/s0886-3350(98)80227-7.

  26. Liu CJ, Cheng CY, Wu CW, Lau LI, Chou JC, Hsu WM. Factors predicting intraocular pressure control after phacoemulsification in angle-closure glaucoma. Arch Ophthalmol (Chicago, Ill: 1960). 2006;124(10):1390–4. https://doi.org/10.1001/archopht.124.10.1390.

  27. Özyol P, Özyol E, Sül S, Baldemir E, Çavdar S. Intra-ocular pressure fluctuation after cataract surgery in primary angle-closure glaucoma eyes medically controlled after laser iridotomy. Acta Ophthalmol. 2016;94(7):e528–33. https://doi.org/10.1111/aos.13023.

  28. Tojo N, Otsuka M, Miyakoshi A, Fujita K, Hayashi A. Improvement of fluctuations of intraocular pressure after cataract surgery in primary angle closure glaucoma patients. Graefe’s Arch Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2014;252(9):1463–8. https://doi.org/10.1007/s00417-014-2666-7.

  29. Medeiros FA, Pinheiro A, Moura FC, Leal BC, Susanna R Jr. Intraocular pressure fluctuations in medical versus surgically treated glaucomatous patients. J Ocul Pharmacol Ther: the official journal of the Association for Ocular Pharmacology and Therapeutics. 2002;18(6):489–98. https://doi.org/10.1089/108076802321021036.

  30. Konstas AG, Topouzis F, Leliopoulou O, Pappas T, Georgiadis N, Jenkins JN, Stewart WC. 24-hour intraocular pressure control with maximum medical therapy compared with surgery in patients with advanced open-angle glaucoma. Ophthalmology. 2006;113(5):761–5.e1. https://doi.org/10.1016/j.ophtha.2006.01.029.

  31. Park SC, Kee C. Large diurnal variation of intraocular pressure despite maximal medical treatment in juvenile open angle glaucoma. J Glaucoma. 2007;16(1):164–8. https://doi.org/10.1097/01.ijg.0000212278.03595.39.

  32. Liang YB, Xie C, Meng HL, et al. Daytime fluctuation of intraocular pressure in patients with primary angle-closure glaucoma after trabeculectomy. J Glaucoma. 2013;22(5):349–54. https://doi.org/10.1097/IJG.0b013e31826a7dd5.

  33. Baskaran M, Kumar RS, Govindasamy CV, et al. Diurnal intraocular pressure fluctuation and associated risk factors in eyes with angle closure. Ophthalmology. 2009;116(12):2300–4. https://doi.org/10.1016/j.ophtha.2009.06.010.

  34. Zebardast N, Kavitha S, Krishnamurthy P, Friedman DS, Nongpiur ME, Aung T, Quigley HA, Ramulu PY, Venkatesh R. Changes in anterior segment morphology and predictors of angle widening after laser Iridotomy in south Indian eyes. Ophthalmology. 2016;123(12):2519–26. https://doi.org/10.1016/j.ophtha.2016.08.020.

  35. Zhekov I, Pardhan S, Bourne RR. Optical coherence tomography-measured changes over time in anterior chamber angle and diurnal intraocular pressure after laser iridotomy: IMPACT study. Clin Exp Ophthalmol. 2018;46(8):895–902. https://doi.org/10.1111/ceo.13303.

  36. Sanchez-Parra L, Pardhan S, Buckley RJ, Parker M, Bourne RR. Diurnal intraocular pressure and the relationship with swept-source OCT-derived anterior chamber dimensions in angle closure: the IMPACT Study. Invest Ophthalmol Vis Sci. 2015;56(5):2943–9. https://doi.org/10.1167/iovs.14-15385.

  37. Park HS, Kim JM, Shim SH, et al. Diurnal intraocular pressure changes in eyes affected with acute primary angle closure and fellow eyes after laser peripheral iridotomy. Jpn J Ophthalmol. 2015;59(5):318–24. https://doi.org/10.1007/s10384-015-0399-8.

  38. Sihota R, Rishi K, Srinivasan G, Gupta V, Dada T, Singh K. Functional evaluation of an iridotomy in primary angle closure eyes. Graefe’s Arch Clin Exp Ophthalmol = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 2016;254(6):1141–9. https://doi.org/10.1007/s00417-016-3298-x.

  39. Bourne R, Zhekov I, Pardhan S. Temporal ocular coherence tomography-measured changes in anterior chamber angle and diurnal intraocular pressure after laser iridoplasty: IMPACT study. Br J Ophthalmol. 2017;101(7):886–91. https://doi.org/10.1136/bjophthalmol-2016-308720.

  40. Bellezza AJ, Hart RT, Burgoyne CF. The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol Vis Sci. 2000;41(10):2991–3000.

    Google Scholar 

  41. Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73. https://doi.org/10.1016/j.preteyeres.2004.06.001.

  42. Tamm ER, Ethier CR, Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration Participants. Biological aspects of axonal damage in glaucoma: a brief review. Exp Eye Res. 2017;157:5–12. https://doi.org/10.1016/j.exer.2017.02.006.

  43. Nouri-Mahdavi K, Hoffman D, Coleman AL, Liu G, Li G, Gaasterland D, Caprioli J, Advanced Glaucoma Intervention Study. Predictive factors for glaucomatous visual field progression in the advanced Glaucoma intervention Study. Ophthalmology. 2004;111(9):1627–35. https://doi.org/10.1016/j.ophtha.2004.02.017.

  44. Caprioli J, Coleman AL. Intraocular pressure fluctuation a risk factor for visual field progression at low intraocular pressures in the advanced glaucoma intervention study. Ophthalmology. 2008;115(7):1123–1129.e3. https://doi.org/10.1016/j.ophtha.2007.10.031.

  45. Bengtsson B, Leske MC, Hyman L, Heijl A, Early Manifest Glaucoma Trial Group. Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(2):205–9. https://doi.org/10.1016/j.ophtha.2006.07.060.

  46. Medeiros FA, Weinreb RN, Zangwill LM, Alencar LM, Sample PA, Vasile C, Bowd C. Long-term intraocular pressure fluctuations and risk of conversion from ocular hypertension to glaucoma. Ophthalmology. 2008;115(6):934–40. https://doi.org/10.1016/j.ophtha.2007.08.012.

  47. Jonas JB, Budde WM, Stroux A, Oberacher-Velten IM, Jünemann A. Diurnal intraocular pressure profiles and progression of chronic open-angle glaucoma. Eye (Lond). 2007;21(7):948–51. https://doi.org/10.1038/sj.eye.6702351.

  48. Guo ZZ, Chang K, Wei X. Intraocular pressure fluctuation and the risk of glaucomatous damage deterioration: a meta-analysis. Int J Ophthalmol. 2019;12(1):123–8. https://doi.org/10.18240/ijo.2019.01.19.

  49. Tan S, Yu M, Baig N, Chan PP, Tang FY, Tham CC. Circadian intraocular pressure fluctuation and disease progression in primary angle closure Glaucoma. Invest Ophthalmol Vis Sci. 2015;56(8):4994–5005. https://doi.org/10.1167/iovs.15-17245.

  50. Baskaran M, Kumar RS, Govindasamy CV, Htoon HM, Wong CY, Perera SA, Wong TT, Aung T. Diurnal intraocular pressure fluctuation and associated risk factors in eyes with angle closure. Ophthalmology. 2009;116(12):2300–4. https://doi.org/10.1016/j.ophtha.2009.06.010.

  51. Chen YY, Sun LP, Thomas R, Liang YB, Fan SJ, Sun X, Li SZ, Zhang SD, Wang NL. Long-term intraocular pressure fluctuation of primary angle closure disease following laser peripheral iridotomy/iridoplasty. Chin Med J. 2011;124(19):3066–9.

    Google Scholar 

  52. Arora T, Bali SJ, Arora V, Wadhwani M, Panda A, Dada T. Diurnal versus office-hour intraocular pressure fluctuation in primary adult onset glaucoma. J Opt. 2015;8(4):239–43. https://doi.org/10.1016/j.optom.2014.05.005.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rojanapongpun, P., Manassakorn, A., Chansangpetch, S. (2021). Intraocular Pressure Fluctuation in Angle Closure Glaucoma. In: Tham, C.C. (eds) Primary Angle Closure Glaucoma (PACG). Springer, Singapore. https://doi.org/10.1007/978-981-15-8120-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8120-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8119-9

  • Online ISBN: 978-981-15-8120-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics