Skip to main content

A Generative Steganography Method Based on WGAN-GP

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1252))

Included in the following conference series:

Abstract

With the development of Generative Adversarial Networks (GAN), GAN-based steganography and steganalysis techniques have attracted much attention from researchers. In this paper, we propose a novel image steganography method without modification based on Wasserstein GAN Gradient Penalty (WGAN-GP). The proposed architecture has a generative network, a discriminative network, and an extractor network. The Generator is used to generate the cover image (also is the stego image), and the Extractor is used to extract secret information. During the process of stego image generation, no modification operations are required. To make full use of the learning ability of convolutional neural networks and GAN, we synchronized the training of Generator and Extractor. Experiment results show that the proposed method has the advantages of higher recovery accuracy and higher training efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pevný, T., Filler, T., Bas, P.: Using high-dimensional image models to perform highly undetectable steganography. In: Böhme, R., Fong, Philip W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_13

    Chapter  Google Scholar 

  2. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 1(1), 1–14 (2014)

    Google Scholar 

  3. Li, B., Tan, S., Wang, M., et al.: Investigation on cost assignment in spatial image steganography. IEEE Trans. Inf. Forensics Secur. 9(8), 1264–1277 (2014)

    Article  Google Scholar 

  4. Fridrich, J., Kodovský, J.: Multivariate Gaussian model for designing additive distortion for steganography. In: Presented at the Proceedings of IEEE ICASSP, Vancou-ver, BC, 26–31 May 2013

    Google Scholar 

  5. Sedighi, V., Cogranne, R., Fridrich, J.: Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11(2), 221–234 (2016)

    Article  Google Scholar 

  6. Chen, K., Zhou, H., Zhou, W., Zhang, W., Yu, N.: Defining cost functions for adaptive JPEG steganography at the microscale. IEEE Trans. Inf. Forensics Secur. 14(4), 1052–1066 (2019)

    Article  Google Scholar 

  7. Fridrich, J., Kodovský, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Presented at the International Conference on Neural Information Processing Systems (2014)

    Google Scholar 

  9. Liming, Z.H.A.I., Ju, J.I.A., Weixiang, R.E.N., Yibo, X.U., Lina, W.A.N.G.: Recent advances in deep learning for image steganography and steganalysis. J. Cyber Secur. 3(6), 2–12 (2018)

    Google Scholar 

  10. Volkhonskiy, D., Nazarov, I., Borisenko, B., et al.: Steganographic generative adversarial networks (2017). arXiv preprint arXiv:1703.05502

  11. Tang, W., Tan, S., Li, B., et al.: Automatic steganographic distortion learning using a generative adversarial network. IEEE Signal Process. Lett. 24(10), 1547–1551 (2017)

    Article  Google Scholar 

  12. Yang, J., Liu, K., Kang, X., et al.: Spatial image steganography based on generative adversarial network (2018). arXiv preprint arXiv:1804.07939

  13. Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press (2009)

    Google Scholar 

  14. Zhou, Z., Sun, H., Harit, R., Chen, X., Sun, X.: Coverless image steganography without embedding. In: Huang, Z., Sun, X., Luo, J., Wang, J. (eds.) ICCCS 2015. LNCS, vol. 9483, pp. 123–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27051-7_11

    Chapter  Google Scholar 

  15. Otori, H., Kuriyama, S.: Data-embeddable texture synthesis. In: Butz, A., Fisher, B., Krüger, A., Olivier, P., Owada, S. (eds.) SG 2007. LNCS, vol. 4569, pp. 146–157. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73214-3_13

    Chapter  Google Scholar 

  16. Hayes, J., Danezis, G.: Generating steganographic images via adversarial training. In: Presented at NIPS 2017: Neural Information Processing Systems, Long Beach, California, USA, December 2017

    Google Scholar 

  17. Zhu, J., Kaplan, R., Johnson, J., et al.: HiDDeN: Hiding Data With Deep Networks (2018). arXiv preprint arXiv:1807.09937

  18. Donghui, H., Liang, W., Wenjie, J., et al.: A novel image steganography method via deep convolutional generative adversarial networks. IEEE Access 6, 38303–38314 (2018)

    Google Scholar 

  19. Radford, A., Metz, L., Chintala, S.: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks (2016). arXiv preprint arXiv:1511.06434

  20. Gulrajani, I., Ahmed, F., Arjovsky, M., et al.: Improved training of wasserstein GANs. In: Advances in Neural Information Processing Systems 30 - Proceedings of the 2017 Conference, pp. 5768–5778 (2017)

    Google Scholar 

  21. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017). arXiv preprint arXiv:1701.07875

  22. Liu, Z., Luo, P., Wang, X., Tang, X.: Large-scale CelebFaces Attributes (CelebA) Dataset. http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

  23. Abadi, M., Agarwal, A., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems (2016). arXiv preprint arXiv:1603.04467

Download references

Acknowledgment

This paper was supported by the National Natural Science Foundation of China (Grant No. 61872384), and Basic research foundation for Engineering University of PAP(Grant No. WJY201918).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J. et al. (2020). A Generative Steganography Method Based on WGAN-GP. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Communications in Computer and Information Science, vol 1252. Springer, Singapore. https://doi.org/10.1007/978-981-15-8083-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8083-3_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8082-6

  • Online ISBN: 978-981-15-8083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics