Skip to main content

Strategies and Advancement in Growth Factor Immobilizable ECM for Tissue Engineering

  • Chapter
  • First Online:
Immobilization Strategies

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

  • 593 Accesses

Abstract

Immobilization of functional molecules in biotechnology is extremely important. Growth factors are biomolecules with high bioactivity on cells and are very useful for culture engineering and regenerative medicine applications. However, their poor stability and high cost are challenges for practical application. Immobilization of growth factors has been conducted by various methods to localize growth factors and to keep high local concentrations. In this chapter, previous methods to immobilize growth factors are outlined. Thereafter, organ-specific extracellular matrix (ECM) and ECM-modelized material as growth factor immobilizable materials are mentioned with focus on their properties and their applications such as regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ECM:

Extracellular matrix

NGF:

Nerve growth factor

HGF:

Hepatocyte growth factor

EGF:

Epidermal growth factor

bFGF:

Basic fibroblast growth factor

VEGF:

Vascular endothelial growth factor

GAG:

Glycosaminoglycan

L-ECM:

Liver-specific extracellular matrix

TX100:

Triton X-100

PBS:

Phosphate buffered saline

H&E staining:

Hematoxylin & Eosin staining

DNA:

Deoxyribonucleic acid

ELISA:

Enzyme-linked immuno-sorbent assay

PUF:

Polyurethane foam

Hep-col:

Heparin-conjugated collagen

Hep-gela:

Heparin-conjugated gelatin

NHS:

N-hydroxysuccinimide

MES:

2-morpholinoethanesulfonic acid, monohydrate

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

References

  • Bual R, Kimura H, Ikegami Y, Shirakigawa N, Ijima H (2018) Fabrication of liver- derived extracellular matrix nanofibers and functional evaluation in in vitro culture using primary hepatocytes. Materialia 4:518–528

    Article  Google Scholar 

  • Griffin JW, Thompson WJ (2008) Biology and pathology of nonmyelinating Schwann cells. Glia 56(14):1518–1531

    Article  PubMed  Google Scholar 

  • Hou YT, Ijima H, Matsumoto S, Kubo T, Takei T, Sakai S, Kawakami K (2010) Effect of a hepatocyte growth factor/heparin-immobilized collagen system on albumin synthesis and spheroid formation by hepatocytes. J Biosci Bioeng 110(2):208–216

    Article  CAS  PubMed  Google Scholar 

  • Hou YT, Ijima H, Takei T, Kawakami K (2011) Growth factor/heparin-immobilized collagen gel system enhances viability of transplanted hepatocytes and induces angiogenesis. J Biosci Bioeng 112(3):265–272

    Article  CAS  PubMed  Google Scholar 

  • Hou YT, Ijima H, Shirakigawa N, Takei T, Kawakami K (2012) Development of growth factor-immobilizable material for hepatocyte transplantation. Biochem Eng J 69:172–181

    Article  CAS  Google Scholar 

  • Ijima H, Kubo T, Hou YT (2009a) Primary rat hepatocytes form spheroids on hepatocyte growth factor/heparin-immobilized collagen film and maintain high albumin production. Biochem Eng J 46:227–233

    Article  CAS  Google Scholar 

  • Ijima H, Mizumoto H, Nakazawa K, Kajiwara T, Maysushita T, Funatsu K (2009b) Hepatocyte growth factor and epidermal growth factor promote spheroid formation in polyurethane foam/hepatocyte culture and improve expression and maintenance of albumin production. Biochem Eng J 47:19–26

    Article  CAS  Google Scholar 

  • Ijima H, Nakamura S, Bual R, Shirakigawa N, Tanoue S (2018) Physical properties of the extracellular matrix of decellularized porcine liver. Gels 4(2)

    Google Scholar 

  • Ijima H, Nakamura S, Bual RP, Yoshida K (2019) Liver-specific extracellular matrix hydrogel promotes liver-specific functions of hepatocytes in vitro and survival of transplanted hepatocytes in vivo. J Biosci Bioeng 128(3):365–372

    Article  CAS  PubMed  Google Scholar 

  • Ikada Y, Tabata Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31(3):287–301

    Article  CAS  PubMed  Google Scholar 

  • Ikegami Y, Ijima H (article in press) Development of heparin-conjugated nanofibers and a novel biological signal by immobilized growth factors for peripheral nerve regeneration. J Biosci Bioeng. https://doi.org/10.1016/j.jbiosc.2019.09.004

  • Kitajima T, Terai H, Ito Y (2007) A fusion protein of hepatocyte growth factor for immobilization to collagen. Biomaterials 28(11):1989–1997

    Article  CAS  PubMed  Google Scholar 

  • Lang EM, Schlegel N, Reiners K, Hofmann GO, Sendtner M, Asan E (2008) Single-dose application of CNTF and BDNF improves remyelination of regenerating nerve fibers after C7 ventral root avulsion and replantation. J Neurotrauma 25(4):384–400

    Article  PubMed  Google Scholar 

  • Lee JY, Bashur CA, Milroy CA, Forciniti L, Goldstein AS, Schmidt CE (2012) Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications. IEEE Trans Nanobiosci 11(1):15–21

    Article  Google Scholar 

  • Lindroos PM, Zarnegar R, Michalopoulos GK (1991) Hepatocyte growth factor hepatopoietin A rapidly increases in plasma before DNA synthesis and liver regeneration stimulated by partial hepatectomy and carbon tetrachloride administration. Hepatology 13(4):743–750

    Article  CAS  PubMed  Google Scholar 

  • Mizumachi H, Ijima H (2013) Measuring stability of vascular endothelial growth factor using an immobilization technique. Adv Biomed Eng 2:130–136

    Article  Google Scholar 

  • Nagai T, Ikegami Y, Mizumachi H, Shirakigawa N, Ijima H (2017) Development of an in-situ evaluation system for neural cells using extracellular matrix-modeled gel culture. J Biosci Bioeng 124(4):430–438

    Article  CAS  PubMed  Google Scholar 

  • Nahmias Y, Berthiaume F, Yarmush ML (2007) Integration of technologies for hepatic tissue engineering. Adv Biochem Eng Biotechnol 103:309–329

    PubMed  Google Scholar 

  • Nakamura S, Ijima H (2013a) Solubilized matrix derived from decellularized liver as a growth factor-immobilizable scaffold for hepatocyte culture. J Biosci Bioeng 116(6):746–753

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Kubo T, Ijima H (2013b) Heparin-conjugated gelatin as a growth factor immobilization scaffold. J Biosci Bioeng 115(5):562–567

    Article  CAS  PubMed  Google Scholar 

  • Nishi N, Matsushita O, Yuube K, Miyanaka H, Okabe A, Wada F (1998) Collagen- binding growth factors: production and characterization of functional fusion proteins having a collagen-binding domain. Proc Natl Acad Sci USA 95(12):7018–7023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto H, Shirakigawa N, Bual RP, Fukuda Y, Nakamura S, Miyata T, Yamao T, Yamashita YI, Baba H, Ijima H (2019) A novel evaluation system for whole-organ-engineered liver graft by ex vivo application to a highly reproducible hepatic failure rat model. J Artif Organs 22(3):222–229

    Article  PubMed  Google Scholar 

  • Semler EJ, Ranucci CS, Moghe PV (2000) Mechanochemical manipulation of hepatocyte aggregation can selectively induce or repress liver-specific function. Biotechnol Bioeng 69(4):359–369

    Article  CAS  PubMed  Google Scholar 

  • Shimosaka M, Bhawal UK (2013) bFGF Upregulates the expression of NGFR in PC12 cells. J Hard Tissue Biol 22(1):19–24

    Article  CAS  Google Scholar 

  • Shirakigawa N, Ijima H, Takei T (2012) Decellularized liver as a practical scaffold with a vascular network template for liver tissue engineering. J Biosci Bioeng 114(5):546–551

    Article  CAS  PubMed  Google Scholar 

  • Shirakigawa N, Takei T, Ijima H (2013) Base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering. J Biosci Bioeng 116(6):740–745

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi E, Sakisaka S, Matsuo K, Tanikawa K, Sata M (2001) Expression and role of vascular endothelial growth factor in liver regeneration after partial hepatectomy in rats. J Histochem Cytochem 49(1):121–130

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ijima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikegami, Y., Ijima, H. (2021). Strategies and Advancement in Growth Factor Immobilizable ECM for Tissue Engineering. In: Tripathi, A., Melo, J.S. (eds) Immobilization Strategies . Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7998-1_3

Download citation

Publish with us

Policies and ethics