Skip to main content

Voltage Constrained Reactive Power Planning by Ameliorated HHO Technique

  • Conference paper
  • First Online:
Recent Advances in Power Systems

Abstract

The demand for electrical power is continuously increasing which may lead to voltage depression in buses or excessive reactive power flow in branches. Solution of voltage constrained reactive power planning (VCRPP) problem aims to optimize objective function like transmission loss, operating cost, and betterment of magnitude of voltage by optimal adjustment of controlling parameters. In present work, Ameliorated Harris hawks optimization (AHHO) and Harris hawks optimization (HHO) algorithm have been applied for the solution of VCRPP problem of power system. Ameliorated Harris hawks optimization procedure improves searching process of the pray. The proposed approach has been tested and examined under different reactive loading conditions. The efficacy of the suggested method is demonstrated from the numerical simulations and justified by comparison with other evolutionary techniques for optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hemmati, R., Hooshmand, R.-A., Khodabakhshian, A.: Market based transmission expansion and reactive power planning with consideration of wind and load uncertainties. Renew. Sustain. Energy Rev. 29, 1–10 (2014)

    Article  Google Scholar 

  2. Birchfield, A.B., Ti, X., Overbye, T.J.: Power flow convergence and reactive power planning in the creation of large synthetic grids. IEEE Trans. Power Syst. 33(6), 6667–6674 (2018)

    Article  Google Scholar 

  3. Sekhane, H., Djamel, L.: Identification of the weakest buses to facilitate the search for optimal placement of var sources using “Kessel and Glavitch” Index. J. Electric. Eng. Technol 1–11 (2019)

    Google Scholar 

  4. Karami-Horestani, A.R., Golshan, M.E.H., Monsef, H.: Expected security constrained reactive power planning. IET Gener. Trans. Distrib. 10(10), 2306–2315 (2016)

    Article  Google Scholar 

  5. El-Araby, E.-S.E., Yorino, N.: Reactive power reserve management tool for voltage stability enhancement. IET Gener. Trans. Distrib. 12(8), 1879–1888 (2018)

    Article  Google Scholar 

  6. Heidari, A.A., Seyedali, M., Hossam F., Ibrahim, A., Majdi, M., Chen, H.: Harris Hawks optimization: Algorithm and applications. Fut. Gener. Comput. Syst. 97, 849–872 (2019)

    Google Scholar 

  7. Shaheen, A.M., Ragab A.E.-S., Sobhy M.F.: A reactive power planning procedure considering iterative identification of VAR candidate buses. Neural Comput. Appl. 31(3), 653–674 (2019)

    Google Scholar 

  8. Deng, Z., Mihai D.R., Jan K.S.: Kriging assisted surrogate evolutionary computation to solve optimal power flow problems. IEEE Transactions on Power Systems (2019)

    Google Scholar 

  9. Bouchekara, H.R.E.H.: Optimal power flow using black-hole-based optimization approach. Appl. Soft Comput. 24, 879–888 (2014)

    Article  Google Scholar 

  10. Reddy, S.S., Srinivasa, C.R.: Optimal power flow using glowworm swarm optimization. Int. J. Electri. Power Energy Syst. 80, 128–139 (2016)

    Google Scholar 

  11. Singh, R.P., Mukherjee, V., Ghoshal, S.P.: Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers. Appl. Soft Comput. 29, 298–309 (2015)

    Google Scholar 

  12. Rajan, A., Malakar, T.: Optimal reactive power dispatch using hybrid Nelder–Mead simplex based firefly algorithm. Int. J. Electri. Power Energy Syst. 66, 9–24 (2015)

    Google Scholar 

  13. Amrane, Y., Mohamed, B., Messaoud, B.: A new optimal reactive power planning based on differential search algorithm. Int. J. Electric. Power Energy Syst. 64, 551–561 (2015)

    Google Scholar 

  14. Lee, W.-T., Horng, S.-C., Lin, C.-F.: Application of ordinal optimization to reactive volt-ampere sources planning problems. Energies 12(14), 2746 (2019)

    Article  Google Scholar 

  15. Bhattacharyya, B., Raj, S.: PSO based bio inspired algorithms for reactive power planning. Int. J. Electr. Power Energy Syst. 74, 396–402 (2016)

    Article  Google Scholar 

  16. Raj, S., Bhattacharyya, B.: Reactive power planning by opposition-based grey wolf optimization method. Int. Trans. Electric. Energy Syst. 28(6), e2551 (2018)

    Article  Google Scholar 

  17. Bhattacharyya, B., Raj, S.: Differential evolution technique for the optimization of reactive power reserves. J. Circ. Syst. Comput. 26(10), 1750155 (2017)

    Article  Google Scholar 

  18. Chiang, H.D., Wang, J.C., Cockings, O., Shin, H.D.: Optimal capacitor placements in Distribution systems: part 2: solution algorithms and numerical results. IEEE Trans Power Deliv 5(2) (1990)

    Google Scholar 

  19. Mahapatra, S., Jha, A.N., Panigrahi, B.K.: Hybrid technique for optimal location and cost sizing of thyristor controlled series compensator to upgrade voltage stability. IET Generat. Trans. Distribu. 10(8), 1921–1927 (2016)

    Google Scholar 

  20. Bhattacharyya, B., Goswami, S.K., Bansal, R.C.: Loss sensitivity approach in evolutionary algorithms for reactive power planning. Electric Power Comp. Syst. 37(3), 287–299 (2009)

    Article  Google Scholar 

  21. Pai, M.A.: Computer Techniques in Power System Analysis, 3rd edn. Tata McGraw Hill Education Private Limited (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Raj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Swetha Shekarappa, G., Mahapatra, S., Raj, S. (2021). Voltage Constrained Reactive Power Planning by Ameliorated HHO Technique. In: Gupta, O.H., Sood, V.K. (eds) Recent Advances in Power Systems. Lecture Notes in Electrical Engineering, vol 699. Springer, Singapore. https://doi.org/10.1007/978-981-15-7994-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7994-3_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7993-6

  • Online ISBN: 978-981-15-7994-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics