Skip to main content

Study of Phasor Measurement Unit and Its Applications

  • Conference paper
  • First Online:
Recent Advances in Power Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 699))

Abstract

Synchrophasors are the measuring elements in which time is synchronized. In this electrical waveforms are represented by both the magnitude and phase angle. The Phasor Measurement Unit (PMU) is fast time-stamped equipment as it provides synchronized and accurate data. It measures voltage, frequency, current phasors, temperature and vibration for all the buses of the system. In the past decades many literatures are presented about the application of PMU. This paper presents a brief review of Wide-Area Monitoring Systems (WAMSs), PMUs, communication and data quality required for the utilization of PMU application in power distribution system as data quality and communication are the important parts of synchrophasor technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oettinger, G.H.: Energy Roadmap 2050. Publications Once of the European Union, Brussels, Belgium (2011)

    Google Scholar 

  2. Jordehi, A.R.: How to deal with uncertainties in electric power systems—a review. Renew. Sustain. Ener. Rev. 96, 145–155 (2018)

    Article  Google Scholar 

  3. Hirth, Lion: The market value of variable renewables: the effect of solar wind power variability on their relative price. Energ. Econ. 38, 218–236 (2013)

    Article  Google Scholar 

  4. Edenhofer, O., Hirth, L., Knopf, B., Pahle, M., Schlömer, S., Schmid, E., Ueckerdt, F.: On the economics of renewable energy sources. Energ. Econ. 40, S12–S23 (2013)

    Article  Google Scholar 

  5. Ueckerdt, F., et al.: System LCOE: what are the costs of variable renewables? Energy 63, 61–75 (2013)

    Article  Google Scholar 

  6. Akrami, A., Doostizadeh, M., Aminifar, F.: Power system flexibility: an overview of emergence to evolution. J. Mod. Power Syst. Clean Energ. 7(5), 987–1007 (2019)

    Article  Google Scholar 

  7. Negnevitsky, M.: High renewable energy penetration and power system security: new challenges and opportunities. In: 10th International Scientific Symposium on Electrical Power Engineering, Elektroenergetika (2019)

    Google Scholar 

  8. Colmenar-Santos, A., et al.: Profitability analysis of grid-connected photovoltaic facilities for household electricity self-sufficiency. Energ. Policy 51, 749–764 (2012)

    Article  Google Scholar 

  9. Lai, C.S., McCulloch, M.D.: Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energ. 190, 191–203 (2017)

    Article  Google Scholar 

  10. Saadat, H.: Power Systems Analysis, 2nd edn. PSA Publishing LLC, Portland (2002)

    Google Scholar 

  11. Baldick, R., Chowdhury, B., Dobson, I. et al: Initial review of methods for cascading failure analysis in electric power transmission systems IEEE PES CAMS task force on understanding, prediction, mitigation and restoration of cascading failures. In: Proceedings of IEEE PES General Meeting, Pittsburgh, USA, 20–24 July 2008, pp. 8 (2008)

    Google Scholar 

  12. Liu, Y., You, S., Yao, W., Cui, Y., Wu, L., Zhou, D., Zhao, J., Liu, H., Liu, Y.: A Distribution LevelWide area monitoring system for the electric power Grid-FNET/GridEye. IEEE Access 5, 2329–2338 (2017)

    Article  Google Scholar 

  13. Aminifar, F., Khodaei, A., Fotuhi-Firuzabad, M., Shahidehpour, M.: Contingency-constrained PMU placement in power networks. IEEE Trans. Power Syst. 25, 516–523 (2010)

    Article  Google Scholar 

  14. Akhlaghi, S.: Optimal PMU placement considering contingency-constraints for power system observability and measurement redundancy. In: Proceedings of the 2016 IEEE Power and Energy Conference at Illinois (PECI), Urbana, IL, USA, 19–20 February 2016, pp. 1–7 (2016)

    Google Scholar 

  15. Akhlaghi, S., Zhou, N., Wu, N.E.: PMU placement for state estimation considering measurement redundancy and controlled islanding. In: Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016, pp. 1–5 (2016)

    Google Scholar 

  16. Xie, N., Torelli, F., Bompard, E., Vaccaro, A.: A graph theory based methodology for optimal PMUs placement and multiarea power system state estimation. Electr. Power Syst. Res. 119, 25–33 (2015)

    Article  Google Scholar 

  17. Sarailoo, M., Wu, N.E.: A new PMU placement algorithm to meet a specified synchrophasor availability. In: Proceedings of the 2016 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT), Minneapolis, MN, USA, 6–9 September 2016, pp. 1–5 (2016)

    Google Scholar 

  18. Li, Q., Cui, T., Weng, Y., Negi, R., Franchetti, F., Ilic, M.D.: An information-theoretic approach to pmu placement in electric power systems. IEEE Trans. Smart Grid 4, 446–456 (2013)

    Article  Google Scholar 

  19. Zhang, C., Jia, Y., Xu, Z., Lai, L.L., Wong, K.P.: Optimal PMU placement considering state estimation uncertainty and voltage controllability. IET Gener. Transm. Distrib. 11, 4465–4475 (2017)

    Article  Google Scholar 

  20. IEEE: IEEE C37.118.1a-2014: IEEE standard for synchrophasor measurements for power system (2014)

    Google Scholar 

  21. Singh, B., Sharma, N., Tiwari, A., Verma, K., Singh, S.: Applications of phasor measurement units (PMUs) in electric power system networks incorporated with FACTS controllers. Int. J. Eng. Sci. Technol. 3, 64–82 (2011)

    Google Scholar 

  22. Mini, S.T., McDonald, J.D.: Power System SCADA and Smart Grids, 1st edn. CRC Press, Boca Raton, FL, USA (2015)

    Google Scholar 

  23. Hojabri, M., et al.: A comprehensive survey on phasor measurement unit applications in distribution systems. Energies 12.23, 4552 (2019)

    Article  Google Scholar 

  24. Siow, L.K., So, P.L., Gooi, H.B., Luo, F.L., Gajanayake, C.J., Vo, Q.N.: Wi-Fi based server in microgrid energy management system. In: Proceedings of the TENCON 2009–2009 IEEE Region 10 Conference, Singapore, 23–26 January 2009, pp. 1–5 (2009)

    Google Scholar 

  25. Eissa, M.M.: New protection principle for smart grid with renewable energy sources integration using WiMAX centralized scheduling technology. Int. J. Electr. Power Energy Syst. 97, 372–384 (2018)

    Article  Google Scholar 

  26. Chin, W.L., Li, W., Chen, H.H.: Energy big data security threats in IoT-based smart grid communications. IEEE Commun. Mag. 55, 70–75 (2017)

    Article  Google Scholar 

  27. Batista, N.C., Melício, R., Matias, J.C.O., Catalão, J.P.S.: Photovoltaic and wind energy systems monitoring and building/home energy management using ZigBee devices within a smart grid. Energy 49, 306–315 (2013)

    Article  Google Scholar 

  28. Lampe, L., Andrea, T.T., Swart, G. (eds.): Power line communications: principles, standards and applications from multimedia to smart grid, 2nd edn. Wiley, Hoboken, NJ, USA (2016)

    Google Scholar 

  29. Dominiak, S., Dersch, U.: Precise time synchronization of phasor measurement units with broadband power line communications. Swiss Federal Oce of Energy SFOE, Bern, Switaerland (2017)

    Google Scholar 

  30. Heuzeroth, T.: Die GanzeWahrheitÜber die NächsteMobilfunk-Generation. Available online https://www.welt.de/wirtschaft/webwelt/article189459047/5G-Die-ganze-Wahrheit-ueber-dienaechsteMobilfunk-Generation.html. Accessed on 28 Nov 2019

  31. Luan, S.W., Teng, J.H., Chan, S.Y., Hwang, L.C.: Development of a smart power meter for AMI based on ZigBee communication. In: International Conference on Power Electronics and Drive Systems (PEDS), Taipei, 2–5 November 2009, pp. 661–665 (2009). http://dx.doi.org/10.1109/PEDS.2009.5385726

  32. Cosovic, M., Tsitsimelis, A., Vukobratovic, D., Matamoros, J., Anton-Haro, C.: 5G mobile cellular networks: enabling distributed state estimation for smart grids. IEEE Commun. Mag. 55, 62–69 (2017)

    Article  Google Scholar 

  33. 5G Americas White Paper: 5G The Future of IoT. Available online https://www.5gamericas:5g-the-future-of-iot. Accessed on 28 Nov 2019

    Google Scholar 

  34. Martínez, C., Parashar, M., Dyer, J., Coroas, J.: Real time monitoring, control and protection. Phasor data requirements for real time wide-area monitoring, control and protection applications. Consort. Electr. Reliab. Technol. Solut. 26, 8 (2005)

    Google Scholar 

  35. Huang, C., Li, F., Zhou, D., Guo, J., Pan, Z., Liu, Y., Liu, Y.: Data quality issues for Synchrophasor applications part I: a review. J. Mod. Power Syst. Clean. 4, 342–352 (2016)

    Article  Google Scholar 

  36. Almas, M.S., Vanfretti, L.: RT-HIL Implementation of the hybrid Synchrophasor and GOOSE-based passive islanding schemes. IEEE Trans. Power Deliv. 31, 1299–1309 (2016)

    Article  Google Scholar 

  37. Von Meier, A., Berkeley, U.C., Brady, K., Berkeley, U.C., Brown, M., Berkeley, U.C., Cotter, G.R., Llc, I.: Synchrophasor Monitoring for Distribution Systems: Technical Foundations and Applications A White Paper by the NASPI Distribution Task Team. NASPI: Berkeley, CA, USA (2018)

    Google Scholar 

  38. Kong, X., Chen, Y., Xu, T., Wang, C., Yong, C., Li, P., Yu, L.: A hybrid state estimator based on SCADA and PMU measurements for medium voltage distribution system. Appl. Sci. 8, 1527 (2018)

    Article  Google Scholar 

  39. Kumar, S., Soni, M.K., Jain, D.K.: Monitoring of wide area power system network with phasor data concentrator (PDC). Int. J. Inf. Eng. Electron. Bus. 7, 20–26 (2015)

    Google Scholar 

  40. Dulau, L.I., Abrudean, M., Bica, D.: Eects of distributed generation on electric power systems. Procedia Technol. 12, 681–686 (2014)

    Article  Google Scholar 

  41. Allen, E., Kosterev, D., Pourbeik, P.: Validation of power system models. In: Proceedings of the IEEE PES General Meeting, Providence, RI, USA, 25–29 July 2010, pp. 1–7 (2010)

    Google Scholar 

  42. Arghandeh, R., Cavraro, G.: Renewable N. topology detection in microgridswith micro-synchrophasors. In: Proceedings of the IEEE Power and Energy Society General Meeting, Denver, CO, USA, 26–30 July (2015)

    Google Scholar 

  43. Von Meier, A., Arghandeh, R.: Every moment counts: synchrophasors for distribution networks with variable resources. In: Renewable Energy Integration, pp. 435–444. Academic Press, Cambridge, MA, USA (2017)

    Google Scholar 

  44. “Factors affecting PMU Installation Costs: U.S. Department of Energy Office of Electricity Delivery and Energy Reliability, Smart Grid Investment Grant Program (2014)

    Google Scholar 

  45. Joseph, H.E. et al.: Scoping study on research and development priorities for distribution-system phasor measurement units. Lawrence Berkeley National Laboratory, SAND2016–3546R (2016)

    Google Scholar 

  46. North American SynchroPhasor Initiative: Synchrophasor monitoring for distribution systems -technical foundations and applications (A white paper by the NASPI distribution task team)” (2018)

    Google Scholar 

  47. Manousakis, N.M., Korres, G.N., Georgilakis, P.S.: Optimal placement of phasor measurement units: a literature review, intelligent system application to power systems (ISAP). In: 16th International Conference on 25–28 Sept 2011, pp. 1–6 (2011)

    Google Scholar 

  48. Yuan, X.A.: A linear algorithm for minimum Phasor measurement units placement. Innov. Smart Grid Technol. (ISGT) pp. 1–3. 19–21 Jan (2010)

    Google Scholar 

  49. Zhou, M., Centeno, V.A., Phadke, A.G., Yi, H., Novosel, D., Volskis, H.A.R.: A preprocessing method for effective PMU placement studies. In: Proceedings 3rd International Conference Electric Utility Deregulation and Restructuring and Power Technologies (DRPT 2008), pp. 2862–2867. 6–9 Apr (2008)

    Google Scholar 

  50. Milosevic, B., Begovic, M.: Nondominated sorting genetic algorithm for optimal phasor measurement placement. Power Syst. IEEE Trans. 18(1), 69–75 (2003)

    Article  Google Scholar 

  51. Ahmadi, A., Alinejad-Beromi, Y., Moradi, M.: Optimal PMU placement for power system observability using binary particle swarm optimization and considering measurement redundancy. Expert Syst. Appl. 38, 7263–7269 (2011)

    Article  Google Scholar 

  52. Aminifar, F., Khodaei, A., Fotuhi-Firuzabad, M., Shahidehpour, M.: Contingency constrained PMU placement in power networks. In: IEEE Transaction Power System, pp. 516–523. (2010)

    Google Scholar 

  53. Chakrabarti, S., Kyriakides, E.: Optimal placement of phasor measurement units for power system observability. IEEE Trans. Power Syst. 23(3), 1433–1440 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv Shankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shankar, S., Yadav, K.B., Priyadarshi, A., Rathore, V. (2021). Study of Phasor Measurement Unit and Its Applications. In: Gupta, O.H., Sood, V.K. (eds) Recent Advances in Power Systems. Lecture Notes in Electrical Engineering, vol 699. Springer, Singapore. https://doi.org/10.1007/978-981-15-7994-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7994-3_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7993-6

  • Online ISBN: 978-981-15-7994-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics