Skip to main content

Compressive Sensing and Contourlet Transform Applications in Speech Signal

  • Conference paper
  • First Online:
ICCCE 2020

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 698))

Abstract

This paper explains a new method for performing two different processes compact and encode in a single algorithm. Speech compression is the way toward changing over discourse signals into a structure that is neatly packed so it has good quality in performance for correspondence and capacity by minimizing the dimensions of the data without losing the information standard (quality) of the original speech. On the other hand Speech encryption is the process of converting usual formal into an unrecognized format to give security to the data across an insecure channel in the transmitter. These two processes can be achieved by a compressive sensing algorithm. In addition to compressive sensing, the transformation of the outline is advantage to demonstrate the compressive sensing concept. It is a two-dimensional transform method for image representations. Contourlet transform plays an important for representing the sparse signals in the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Azawie MKM, Gaze AM (2016) Combined speech compression, and encryption using contourlet transform and compressive sensing. Int J Comput Appl (0975 – 8887) 140(5)

    Google Scholar 

  2. Candes EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Sig Process Mag 21–30

    Google Scholar 

  3. Candes EJ, Wakin MB (2008) An introduction to compressive sampling. In: IEEE signal processing techniques, University Purdue, Electrical and computer engineering

    Google Scholar 

  4. Baraniuk RG (2007) Compressive sensing. IEEE Sig Process Mag 24:118–121

    Article  Google Scholar 

  5. Sreenivas TV, Kleijn WB (2009) Compressive sensing for sparsely excited speech signals. In: IEEE international conference on acoustics, speech, and signal processing, pp 4125–4128

    Google Scholar 

  6. Donoho DL (2006) Compressed Sensing. IEEE Trans Inf Theory 52:1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  7. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53:4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  8. Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image coder. IEEE Trans Commun 31(4):532–540

    Article  Google Scholar 

  9. Shi C, Bhargara B (1998) Fast MPEG video encryption algorithm. Department of Computer Sciences, Purdue University

    Google Scholar 

  10. Do M, Vetterli M (2002) Contourlets. In: Stoeckler J, Welland GV (eds.) Beyond wavelets. Academic Press, pp 1–27

    Google Scholar 

  11. Donoho DL, Vetterli M, DeVore RA, Daubechies IC (1998) Data compression and harmonic analysis. IEEE Trans Inf Theory 44(6):2435–2476

    Article  MathSciNet  MATH  Google Scholar 

  12. Fuchs JJ (2002) On sparse representation in arbitrary redundant bases. IEEE Trans Inf Theory 50(6):1341–1344

    Article  MathSciNet  MATH  Google Scholar 

  13. Baron D, Wakin MB, Duarte M, Sarvotham S, Baraniuk RG (2005) Distributed compressed sensing. http://dsp.rice.edu/cs/DCS112005.pdf

  14. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans Sig Process 54(11):4311–4322

    Google Scholar 

  15. Rauhut H, Schnass K, Bandergheynst P (2008) Compressed sensing and redundant dictionaries. IEEE Trans Inf Theory 54:2210–2219

    Article  MathSciNet  MATH  Google Scholar 

  16. Elad M, Bruckstein AM (2002) A generalized uncertainty principle and sparse representations in pairs of bases. IEEE Trans Inf Theory 49(9):2558–2567

    Article  MathSciNet  MATH  Google Scholar 

  17. Akcakaya M, Tarokh V (2008) A frame construction and a universal distortion bound for sparse representations. IEEE Trans Sig Process 56(6):2443–2450

    Article  MathSciNet  MATH  Google Scholar 

  18. Figueiredo MAT, Nowak RD, Wright SJ (2007) Gradient projection for sparse reconstruction. IEEE J Sel Top Sig Process 1:586–597

    Article  Google Scholar 

  19. Candes E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52:489–509

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu Y, Loizou P (2008) Evaluation of objective quality measures for speech enhancement. IEEE Trans Speech Audio Process 16(1):229–238

    Article  Google Scholar 

  21. Do MN, Vetterli M (2003) Contourlets. In: Beyond wavelets. Academic Press, New York

    Google Scholar 

  22. Dick C, Harris F (2000) FPGA signal processing using sigma-delta modulation. IEEE Sig Process Mag 17(1):20–35

    Article  Google Scholar 

  23. Candès E, Tao T (2006) Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory 52:5406–5425

    Google Scholar 

  24. Hurley N, Rickard S (2009) Comparing measures of sparsity. IEEE Trans Inf Theory 55:4723–4741

    Article  MathSciNet  MATH  Google Scholar 

  25. Zanartu M (2005) Audio compression using wavelet techniques. University Purdue, Electrical and computer engineering

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramya, K., Bolisetti, V., Nandan, D., Kumar, S. (2021). Compressive Sensing and Contourlet Transform Applications in Speech Signal. In: Kumar, A., Mozar, S. (eds) ICCCE 2020. Lecture Notes in Electrical Engineering, vol 698. Springer, Singapore. https://doi.org/10.1007/978-981-15-7961-5_78

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7961-5_78

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7960-8

  • Online ISBN: 978-981-15-7961-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics