Skip to main content

CNN Model for American Sign Language Recognition

  • Conference paper
  • First Online:
ICCCE 2020

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 698))

Abstract

This paper proposes a model based on convolutional neural network for hand gesture recognition and classification. The dataset uses 26 different hand gestures, which map to English alphabets A–Z. Standard dataset called Hand Gesture Recognition available in Kaggle website has been considered in this paper. The dataset contains 27,455 images (size 28 * 28) of hand gestures made by different people. Deep learning technique is used based on CNN which automatically learns and extracts features for classifying each gesture. The paper does comparative study with four recent works. The proposed model reports 99% test accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Premaratne P (2014) Human Computer Interaction Using Hand Gestures, vol XV, pp 158–174. ISBN 978-981-4585-68-2

    Google Scholar 

  2. Hiddinga A, Crasborn O (2011) Signed languages and globalization. Lang Soc 40(4):483–505

    Article  Google Scholar 

  3. Dong C (2015) American sign language alphabet recognition using Microsoft Kinect. Masters Thesis, 7392. https://scholarsmine.mst.edu/masters_theses/7392

  4. Pigou L, Dieleman S, Kindermans P-J, Schrauwen B Sign language recognition using convolutional neural networks. In: European Conference on Computer Vision (ECCV 2014) Workshops. Springer, pp 572–578

    Google Scholar 

  5. Vishwas S, Hemanth Gowda M, Vivek Chandra HN Tannvi (2018) Sign language translator using machine learning. Int J Appl Eng Res 13(4):1–5 ISSN 0973-4562

    Google Scholar 

  6. Huang J, Zhou W, Zhang Q, Li H, Li W (2018) Video-based sign language recognition without temporal segmentation. In: 32nd AAAI Conference on Artificial Intelligence (AAAI-2018), New Orleans, Louisiana, USA, 2–7 February 2018. arXiv:1801.10111

  7. Suarez J, Murphy RR (2012) Hand gesture recognition with depth images: a review. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, Paris, France, 9–13 September 2012

    Google Scholar 

  8. Dia J, Patil D, Raut P, Lopes M (2019) Sign language interpretation using deep learning. IOSR J Eng (IOSRJEN) 09(4):17–25 ISSN (e) 2250-3021, ISSN (p) 2278-8719

    Google Scholar 

  9. Das A, Gawde S, Suratwala K, Kalbande D (2018) Sign language recognition using deep learning on custom processed static gesture images. In: 2018 International Conference on Smart City and Emerging Technology (ICSCET), 5 January 2018. ISBN 978-1-5386-1185-2

    Google Scholar 

  10. Ji Y, Kim S, Lee K-B (2017) Sign language learning system with image sampling and convolutional neural network. In: 2017 First IEEE International Conference on Robotic Computing, Taiwan, 10–12 April 2017. ISBN 978-1-5090-6724-4

    Google Scholar 

  11. Huang J, Zhou W, Li H, Li W (2015) Sign language interpretation using deep learning. In: 2015 IEEE International Conference on Multimedia and Expo (ICME), Italy, 29 June–3 July 2015. ISBN 978-1-4799-7082-7

    Google Scholar 

  12. Nagi J., Ducatelle F, Di Caro GA, Cireşan D, Meier U, Giusti A, Nagi F, Schmidhuber J, Gambardella LM (2011) Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA2011), Malaysia, 16–18 November 2011. ISBN 978-1-4577-0242-6

    Google Scholar 

  13. https://www.kaggle.com/datamunge/sign-language-mnist

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilottama Goswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goswami, T., Javaji, S.R. (2021). CNN Model for American Sign Language Recognition. In: Kumar, A., Mozar, S. (eds) ICCCE 2020. Lecture Notes in Electrical Engineering, vol 698. Springer, Singapore. https://doi.org/10.1007/978-981-15-7961-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7961-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7960-8

  • Online ISBN: 978-981-15-7961-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics