Skip to main content

Throughput Comparison of Majority Logic Decoder/Detector with Other Decoders Used in Communication Systems

  • Conference paper
  • First Online:
ICCCE 2020

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 698))

  • 1560 Accesses

Abstract

The Low Density Parity Check (LDPC) codes are linear block codes, which are Shannon Limit codes. These codes are attained least error floors of data bits for data transfer applications used in communication systems. However, the proposed LDPC codes are more beneficial than Turbo codes because of reduction in the decoding complexity and detection of the errors in less cycle time. This results the reduction of decoding time, low decoding latency and as well as least error floors in communication, when the transmitted data contains multiple error bits. This paper is proposed to represent the majority logic decoding/detecting of LDPC codes. This paper proposes the Generation of Generator and Parity Check matrices for both Binary and Non-Binary LDPC Codes. Here, the proposed Majority Logic Decoder/Detector (MLDD) is Hard decision decrypting scheme and it uses majority logic decoding based on the data transmission and reception in communication channel. This paper also elaborates the effective implementation of encoding and decoding of LDPC Codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallager RG (1962) Low density parity check codes. IRE Trans Inf Theory IT-8:21–28

    Article  MathSciNet  MATH  Google Scholar 

  2. MacKay DJC, Neal RM (1996) Near Shannon limit performance of low density parity check codes. Electron Lett 32(18):1645–1646

    Article  Google Scholar 

  3. MacKay DJC (1997) Good error correcting codes based on very sparse matrices. IEEE Trans Inf Theory 45(2)

    Google Scholar 

  4. Davey MC, MacKay DJC (1998) Low density parity check codes over GF (q). IEEE Commun Lett 2(6)

    Google Scholar 

  5. MacKay DJC (1998) Gallager codes that are better than turbo codes. In: Proceedings of the 36th Allerton conference on communication, control, and computing

    Google Scholar 

  6. Kou Y, Lin S, Fossorier M (1999) Low density parity check code based on finite geometries: a rediscovery and more. IEEE Trans Inf Theory

    Google Scholar 

  7. Richarson T, Urbanke R (1999) Design of provably good low density parity check codes. IEEE Trans Inf Theory

    Google Scholar 

  8. Mao Y, Banihasherni A, Landolsi M (2000) Comparison between low-density parity-check codes and turbo product codes for delay and complexity sensitive applications. In: Proceedings of the 20th biennial symposium on communication, pp 151–153

    Google Scholar 

  9. Reviriego P, Maestro JA, Flanagan MF (2013) Error detection in majority logic decoding of Euclidean geometry low density parity check (EGLDPC) codes. IEEE Trans Very Large Scale Integr (VLSI) Syst 21(1):156–159

    Google Scholar 

  10. Chinna Babu J, Chinnapu Reddy C, Giri Prasad MN (2016) Comparison of technologies for the implementation of SBF decoder for geometric LDPC codes. INDJST J 9:30

    Google Scholar 

  11. Chinna Babu J (2017) VLSI implementation of decoding algorithms for EG-LDPC codes. Procedia Comput Sci 115(3):143–150

    Google Scholar 

  12. Giri Prasad MN, Chinnapu Reddy C, Chinna Babu J (2017) Generation and decoding of non-binary LDPC codes using MSA decoding algorithm. Lecture notes in electrical engineering, vol 434, pp 583–591, September 2017

    Google Scholar 

  13. Sha J, Gao M, Zhang Z, Li L (2006) Self reliability based weighted bit-flipping decoding for low-density parity-check codes. In: 5th WSEAS international conference on instrumentation, April 2006

    Google Scholar 

  14. Chen J, Dholakia A, Eleftheriou E, Fossorier MPC, Hu X-Y (2005) Reduced- complexity decoding of LDPC codes. IEEE Trans Commun 53(8):1288–1299

    Article  Google Scholar 

  15. Palanki R, Fossorier MPC, Yedidia JS (2007) Iterative decoding of multiple-step majority logic decodable codes. IEEE Trans Commun 55(6):1099–1102

    Article  Google Scholar 

  16. Kudekar S, Richardson T, Urbanke R (2013) Spatially coupled ensembles universally achieve capacity under belief propagation. IEEE Trans Inf Theory 59(12):7761–7813

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar S, Young AJ, Macris N, Pfister HD (2014) Threshold saturation for spatially coupled LDPC and LDGM codes on BMS channels. IEEE Trans Inf Theory 60(12):7389–7415

    Article  MathSciNet  MATH  Google Scholar 

  18. Chinna Babu J, Chinnapu Reddy C, Giri Prasad MN (2017) Comparison of various decoding algorithms for EG-low density parity check codes. In: Konkani A, Bera R, Paul S (eds) Advances in systems, control and automation, vol 442. Lecture notes in electrical engineering. Springer, Singapore, pp 605–613

    Chapter  Google Scholar 

  19. Liu S, Reviriego P, Maestro JA (2012) Efficient majority logic fault detection with difference-set codes for memory applications. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(1):148–156

    Google Scholar 

  20. Ganepola VS, Carrasco RA, Wassell IJ, Le Goff S (2008) Performance study of non-binary LDPC codes over GF (q)

    Google Scholar 

  21. Chinna Babu J, Prathyusha S, Usha Sree V (2014) Simulation and synthesis of majority logic decoder/detector for EG-LDPC codes. Int J Comput Appl 104(8):32–35

    Google Scholar 

  22. Chinna Babu J, Prathyusha S (2014) Hard decision and soft decoding algorithms of LDPC and comparison of LDPC with turbo codes, RS codes and BCH codes. In: IRF international conference, 27th July 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chinna Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chinna Babu, J., Mallikharjuna Rao, N. (2021). Throughput Comparison of Majority Logic Decoder/Detector with Other Decoders Used in Communication Systems. In: Kumar, A., Mozar, S. (eds) ICCCE 2020. Lecture Notes in Electrical Engineering, vol 698. Springer, Singapore. https://doi.org/10.1007/978-981-15-7961-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7961-5_47

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7960-8

  • Online ISBN: 978-981-15-7961-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics