Skip to main content

A Game-Theoretic Approach for Cognitive Radio Networks Using Machine Learning Techniques

  • Conference paper
  • First Online:
ICCCE 2020

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 698))

Abstract

Cognitive Radio has been viewed as a promising technology to enhance spectrum utilization significantly. In this work, we propose a model for Dynamic Spectrum Allocationin Cognitive Radio Networks using Game Theory. Furthermore, in order to accommodate for all cases, we have put to good use of Preemptive Resume Priority M|M|1 Queuing Model. To supplement it we introduce a priority-based scheduling algorithm called Incremental Weights-Decremental Ratios (IW-DR). As a means to ameliorate the efficiency, we have made use of Regression Models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitola III J (2000) Cognitive Radio: An integrates Agent Architecture for Software Defined Radio. Doctoral Dissertation, KTH, Stockholm, Sweden

    Google Scholar 

  2. Mitola J III, Maguire GQ Jr (1999) Cognitive radio: making software radios more personal. IEEE Pers Commun 6(4):13–18

    Article  Google Scholar 

  3. Costlow T (2003) Cognitive radios will adapt to users. IEEE Intell Syst 18(3):7

    Article  Google Scholar 

  4. Jayaweera SK, Christodoulou CG (2011) Radiobots: Architecture, algorithms and real time reconfigurable antenna designs for autonomous, self-learning future cognitive radios. University of New Mexico, Technical Report EECE-TR-11-0001

    Google Scholar 

  5. Song C, Zhang Q (2010) Intelligent dynamic spectrum access assisted by channel usage prediction. In: IEEE Communications Society

    Google Scholar 

  6. Krishnamurthy V (2009) Decentralized spectrum access amongst cognitive radios - an interacting multivariate global game-theoretic approach. IEEE Trans Signal Process 57(10):3999–4013

    Article  MathSciNet  MATH  Google Scholar 

  7. Han Z, Zheng R, Poor H (2011) Repeated auctions with Bayesian nonparametric learning for spectrum access in cognitive radio networks. IEEE Trans Wirel Commun 10(3):890–900

    Article  Google Scholar 

  8. Jayaweera SK, Li T (2009) Dynamic spectrum leasing in cognitive radio networks via primary-secondary user power control games. IEEE Trans Wirel Commun 8(6):3300–3310

    Article  Google Scholar 

  9. Jayaweera SK, Vazquez-Vilar G, Mosquera C (2010) Dynamic spectrum leasing: a new paradigm for spectrum sharing in cognitive radio networks. IEEE Trans Veh Technol 59(5):2328–2339

    Article  Google Scholar 

  10. Thapaliya A, Sengupta S (2017) Understanding the feasibility of machine learning algorithms in a game theoretic environment for dynamic spectrum access. In: SumerSim-SPECTS, Bellevue, Washington, USA

    Google Scholar 

  11. Sengupta S, Chandramouli R, Brahma S, Chatterjee M (2008) A game theoretic framework for distributed self-coexistence among IEEE 802.22 networks. In: IEEE Conference and Exhibition Global Telecommunications (GLOBECOM), pp 1–6

    Google Scholar 

  12. Huang D, Miao C, Miao Y, Shen ZI (2009) A game theory approach for self-coexistence analysis among IEEE 802.22 networks. In: 7th International Conference onInformation, Communications and Signal Processing, pp 1–5

    Google Scholar 

  13. Zakariya AY, Rabia SI (2016) Analysis of an interruption-based priority for multi-class secondary users in cognitive radio networks. In: IEEE ICC 2016 - Cognitive Radio and Networks Symposium, pp 1–6

    Google Scholar 

  14. Zhang Y, Jiang T, Zhang L, Qu D, Peng W (2013) Analysis on the transmission delay of priority-based secondary users in cognitive radio networks. In: International Conference on Wireless Communications and Signal processing, pp 1–6

    Google Scholar 

  15. Neel J, Reed JH, Gilles RP (2002) The role of game theory in analysis of software radio networks. In: Proceeding of the SDR 02 Technical Conference and Product Exposition, pp 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mangairkarasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mangairkarasi, S., Sarankapani, R., Arivudainambi, D. (2021). A Game-Theoretic Approach for Cognitive Radio Networks Using Machine Learning Techniques. In: Kumar, A., Mozar, S. (eds) ICCCE 2020. Lecture Notes in Electrical Engineering, vol 698. Springer, Singapore. https://doi.org/10.1007/978-981-15-7961-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7961-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7960-8

  • Online ISBN: 978-981-15-7961-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics