Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 306))

  • 688 Accesses

Abstract

At present, the light efficiency of the high-power white LED has reached 250 lm/W in the industry. The light efficiency reported in the laboratory has exceeded 300 lm/W. The innovation of LED technology and application of LEDs have far exceeded expectations. However, the luminous efficiency of the traditional planar LED with InGaN/GaN multiple quantum well structure is difficult to rise significantly due to some inherent problems. At the same time, the light efficiency is still far away from the theoretical limit of 400 lm/W. In addition, with the demand of some special applications, some new LED technologies such as nanorod LEDs, quantum dot LEDs, polarized LEDs, etc., have been explored. The exploration of the growth, preparation and application of these new LED structures not only contribute to the research of basic physics but also to solve the bottleneck problem in the development of semiconductor lighting by improving the material and device performance and by approaching the theoretical limit of LED lighting. Thus, it has important research value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281, 956–961 (1998)

    Google Scholar 

  2. F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B. 56, 10024–10027 (1997)

    ADS  Google Scholar 

  3. M.H. Chang, D. Das, P.V. Varde et al., Light emitting diodes reliability review. Microelectron. Reliab. 52, 762–782 (2012)

    Google Scholar 

  4. F. Qian, Y. Li, S. Gradecak et al., Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975–1979 (2004)

    ADS  Google Scholar 

  5. S.F. Li, A. Waag, GaN based nanorods for solid state lighting. J. Appl. Phys. 111, 071101 (2012)

    ADS  Google Scholar 

  6. M.S. Kang, C.H. Lee, J.B. Park et al., Gallium nitride nanostructures for light-emitting diode applications. Nano Energy 1, 391–400 (2012)

    Google Scholar 

  7. J. Bai, Q. Wang, T. Wang, Greatly enhanced performance of InGaN/GaN nanorod light emitting diodes. Phys. Status Solidi A-Appl. Mater. Sci. 209, 477–480 (2012)

    ADS  Google Scholar 

  8. G.T. Wang, Q.M. Li, J.J. Wierer, D.D. Koleske, J.J. Figiel, Top-down fabrication and characterization of axial and radial III-nitride nanowire LEDs. Phys. Status Solidi A-Appl. Mater. Sci. 211, 748–751 (2014)

    ADS  Google Scholar 

  9. W. Bergbauer, M. Strassburg et al., Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells. Nanotechnology 21, 305201 (2010)

    Google Scholar 

  10. C.H. Lee, Y.J. Kim, Y.J. Hong, S.R. Jeon, S. Bae, B.H. Hong, G.C. Yi, Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films. Adv. Mater. 23, 4614–4619 (2011)

    Google Scholar 

  11. H.W. Lin, Y.J. Lu, H.Y. Chen, H.M. Lee, S. Gwo, InGaN/GaN nanorod array white light-emitting diode. Appl. Phys. Lett. 97, 073101 (2010)

    ADS  Google Scholar 

  12. H. Sekiguchi, K. Kishino, A. Kikuchi, Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 96, 231104 (2010)

    ADS  Google Scholar 

  13. S. Albert, A. Bengoechea-Encabo, X. Kong, M.A. Sanchez-Garcia, E. Calleja, A. Trampert, Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns. Appl. Phys. Lett. 102, 181103 (2013)

    ADS  Google Scholar 

  14. Y.J. Hong, C.H. Lee, A. Yoon, M. Kim, H.K. Seong, H.J. Chung, C. Sone, Y.J. Park, G.C. Yi, Visible-color-tunable light-emitting diodes. Adv. Mater. 23, 3284–3288 (2011)

    Google Scholar 

  15. K. Kumakura, K. Nakakoshi, J. Motohisa, T. Fukui, H. Hasegawa, Novel formation method of quantum-dot structures by self-limited selective-area metalorganic vapor-phase epitaxy. Jpn. J. Appl. Phys. Part 1-Reg. Pap. Short Notes Rev. Pap. 34, 4387–4389 (1995)

    Google Scholar 

  16. J. Tulkki, A. Heinamaki, Confinement effect in a quantum-well dot induced by an InP stressor. Phys. Rev. B. 52, 8239–8243 (1995)

    ADS  Google Scholar 

  17. S. Raymond, X. Guo, J.L. Merz, S. Fafard, Excited-state radiative lifetimes in self-assembled quantum dots obtained from state-filling spectroscopy. Phys. Rev. B. 59, 7624–7631 (1999)

    ADS  Google Scholar 

  18. R. Heitz, M. Grundmann et al., Multiphonon-relaxation processes in self-organized InAs/GaAs quantum dots. Appl. Phys. Lett. 68, 361–363 (1996)

    ADS  Google Scholar 

  19. Y.R. Wu, Y.Y. Lin, H.H. Huang, J. Singh, Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting. J. Appl. Phys. 105, 013117 (2009)

    ADS  Google Scholar 

  20. S. Schulz, E.P. O’reilly, Theory of reduced built-in polarization field in nitride-based quantum dots. Phys. Rev. B. 82, 033411 (2010)

    Google Scholar 

  21. I.K. Park, J.Y. Kim, M.K. Kwon, C.Y. Cho, J.H. Lim, S.J. Park, Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells. Appl. Phys. Lett. 92, 091110 (2008)

    ADS  Google Scholar 

  22. M. Zhang, P. Bhattacharya, W. Guo, InGaN/GaN self-organized quantum dot green light emitting diodes with reduced efficiency droop. Appl. Phys. Lett. 97, 011103 (2010)

    ADS  Google Scholar 

  23. W.B. Lv, L. Wang, J.X. Wang, Z.B. Hao, Y. Luo, InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers. Nanoscale Res. Lett. 7, 617 (2012)

    ADS  Google Scholar 

  24. J. Ma, X.L. Ji et al., Anomalous temperature dependence of photoluminescence in self-assembled InGaN quantum dots. Appl. Phys. Lett. 101, 131101 (2012)

    ADS  Google Scholar 

  25. S.J. Chua, C.B. Soh, W. Liu, J.H. Teng, S.S. Ang, S.L. Teo, Quantum dots excited InGaN/GaN phosphor-free white LEDs. Phys. Status Solidi C Curr. Top. Solid State Phys. 5, 2189–2191 (2008)

    ADS  Google Scholar 

  26. H.S. Chen, C.K. Hsu, H.Y. Hong, InGaN-CdSe-ZnSe quantum dots white LEDs. IEEE Photonics Technol. Lett. 18, 193–195 (2006)

    ADS  Google Scholar 

  27. K. Okamoto, Y. Kawakami, High-efficiency InGaN/GaN light emitters based on nanophotonics and plasmonics. IEEE J. Sel. Top. Quantum Electron. 15, 1199–1209 (2009)

    ADS  Google Scholar 

  28. K. Okamoto, I. Niki, A. Shvartser et al., Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 3, 601–605 (2004)

    ADS  Google Scholar 

  29. K. Okamoto, I. Niki, A. Scherer, Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl. Phys. Lett. 87, 071102 (2005)

    ADS  Google Scholar 

  30. P.P. Pompa, L. Martiradonna, A.D. Torre et al., Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol. 1, 126–130 (2006)

    ADS  Google Scholar 

  31. D.M. Yeh, C.F. Huang, C.Y. Chen, Y.C. Lu, C.C. Yang, Localized surface plasmon-induced emission enhancement of a green light-emitting diode. Nanotechnology 19, 345201 (2008)

    Google Scholar 

  32. C.Y. Cho, M.K. Kwon, S.J. Lee et al., Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN. Nanotechnology 21, 205201 (2010)

    ADS  Google Scholar 

  33. C.Y. Cho, K.S. Kim, S.J. Le et al., Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p- GaN. Appl. Phys. Lett. 99, 041107 (2011)

    ADS  Google Scholar 

  34. C.H. Lu, C.C. Lan, Y.L. Lai et al., Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array. Adv. Funct. Mater. 21, 4719–4723 (2011)

    Google Scholar 

  35. H.S. Chen, C.F. Chen, Y. Kuo et al., Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN. Appl. Phys. Lett. 102, 41108 (2013)

    Google Scholar 

  36. Z.G. Yu, L.X. Zhao, X.C. Wei et al., Surface plasmon-enhanced nanoporous GaN based green light-emitting diodes with Al2O3 passivation layer. Opt. Express 22, A1596–A1603 (2014)

    Google Scholar 

  37. M.F. Schubert, A. Noemaun, S. Chhajed et al., Encapsulation shape with non-rotational symmetry designed for extraction of polarized light from unpolarized sources. Opt. Express 15, 10452–10457 (2007)

    ADS  Google Scholar 

  38. M.F. Schubert, S. Chhajed, J.K. Kim et al., Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates. Appl. Phys. Lett. 91, 051117 (2007)

    ADS  Google Scholar 

  39. M.F. Schubert, S. Chhajed, J.K. Kim et al., Linearly polarized emission from GaInN light-emitting diodes with polarization-enhancing reflector. Opt. Express 15, 11213–11218 (2007)

    ADS  Google Scholar 

  40. O. Sepsi, I. Szanda, P. Koppa, Investigation of polarized light emitting diodes with integrated wire grid polarizer. Opt. Express 18(14), 14547–14552 (2010)

    ADS  Google Scholar 

  41. N. Gardner, J. Kim, J. Wierer et al., Polarization anisotropy in the electroluminescence of m-plane InGaN-GaN multiple-quantum-well light-emitting diodes. Appl. Phys. Lett. 86, 111101 (2005)

    ADS  Google Scholar 

  42. S. Brinkley, Y. Lin, A. Chakraborty et al., Polarized spontaneous emission from blue-green m-plane GaN-based light emitting diodes. Appl. Phys. Lett. 98, 011110 (2011)

    ADS  Google Scholar 

  43. M. Kubota, K. Kuniyoshi, T. Taketoshi et al., Temperature dependence of polarized photoluminescence from nonpolar m-plane InGaN multiple quantum wells for blue laser diodes. Appl. Phys. Lett. 92, 011920 (2008)

    ADS  Google Scholar 

  44. E. Matioli, S. Brinkley, K.M. Kelchner et al., Polarized light extraction in m-plane GaN light-emitting diodes by embedded photonic-crystals. Appl. Phys. Lett. 98, 251112 (2011)

    ADS  Google Scholar 

  45. E. Matioli, S. Brinkley, K.M. Kelchner, Y.L. Hu, S. Nakamura, S. DenBaars, J. Speck, C. Weisbuch, Light Sci. Appl. 1, e22 (2012)

    Google Scholar 

  46. H. Masui, H. Yamada, K. Iso et al., Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure. J. Phys. D-Appl. Phys. 41, 225104 (2008)

    ADS  Google Scholar 

  47. A. Yamaguchi, Anisotropic optical matrix elements in strained GaN quantum wells on semipolar and nonpolar substrates. Jpn. J. Appl. Phys. Part 2-Lett. Express Lett. 46, L789–L791 (2007)

    Google Scholar 

  48. J. Shakya, K. Knabe, K. Kim et al., Polarization of III-nitride blue and ultraviolet light-emitting diodes. Appl. Phys. Lett. 86, 091107 (2005)

    ADS  Google Scholar 

  49. C. Jia, T. Yu, S. Mu et al., Polarization of edge emission from III-nitride light emitting diodes of emission wavelength from 395 to 455 nm. Appl. Phys. Lett. 90, 211112 (2007)

    ADS  Google Scholar 

  50. K. Shen, C. Chen, C. Huang et al., Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure. Appl. Phys. Lett. 92, 013108 (2008)

    ADS  Google Scholar 

  51. K. Shen, C. Liao, Z. Yu et al., Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling. J. Appl. Phys. 108, 113101 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J. et al. (2020). Novel Nitride LED Technology. In: III-Nitrides Light Emitting Diodes: Technology and Applications. Springer Series in Materials Science, vol 306. Springer, Singapore. https://doi.org/10.1007/978-981-15-7949-3_12

Download citation

Publish with us

Policies and ethics