Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1255))

Abstract

This is the era of automation, in which the real and the virtual world are fast converging. The established notions are being rapidly changed by the use of robotics, machine learning (ML) and artificial intelligence (AI). Automation can be found in normal day-to-day life applications, industries, space and health care everywhere. In the zeal to achieve better sensing techniques and improved output results from machines, electronic or robotic forms of human body parts and organs are being developed. Robotic arm, electronic nose, electronic tongue, robotic moving fingers, etc. are few such examples. E-sensing is garnering a huge interest due to its ability to mimic human behaviour. Thus, a detailed study into e-sensing technologies is the need of the hour. In this paper, a brief study on the recent works on e-sensing technology is presented. The current study sheds light upon the definition, classification, practical application of e-nose and e-tongue for different type of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson, Alphus, Baietto, Manuela: Applications and advances in electronic-nose technologies. Sensors 9(7), 5099–5148 (2009)

    Article  Google Scholar 

  2. Wilson, A.D.: Future applications of electronic-nose technologies in healthcare and biomedicine. In: Akyar, Isin, ed Wide Spectra of Quality Control. InTech Publishing, Rijeka, Croatia. 267–290. (2011): 267-290

    Google Scholar 

  3. Keller, P.E., Kangas, L.J., Liden, L.H., Hashem, S., Kouzes, R.T.: Electronic noses and their applications. In: World Congress on Neural Networks (WCNN), pp. 928–931 (1995)

    Google Scholar 

  4. Zou, Y., Hao, W., Xi, Z., D, H., Ping, W.: Electronic nose and electronic tongue. In: Bioinspired Smell and Taste Sensors, pp. 19–44. Springer, Dordrecht (2015)

    Google Scholar 

  5. Deshmukh, S., Bandyopadhyay, R., Bhattacharyya, N., Pandey, R.A., Jana, A.: Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring–an overview. Talanta 144, 329–340 (2015)

    Google Scholar 

  6. Esteves, C., Henrique, A., Iglesias, B.A., Ogawa, T., Araki, K., Hoehne, L., Gruber, J.: Identification of tobacco types and cigarette brands using an electronic nose based on conductive polymer/porphyrin composite sensors. ACS Omega 3(6), 6476–6482 (2018)

    Google Scholar 

  7. Burlachenko, J., Kruglenko, I., Manoylov, E., Kravchenko, S., Krishchenko, I., Snopok, B.: Virtual sensors for electronic nose devises. In: 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), pp. 1–3. IEEE (2019)

    Google Scholar 

  8. Silva, T.G., Paixão, T.R.L.C.: Development of an electronic tongue to distinguish cutting agents in cocaine samples to understand drug trafficking. In: 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), pp. 1–3. IEEE (2017)

    Google Scholar 

  9. Men, H., Chen, D., Zhang, X., Liu, J., Ning, K.: Data fusion of electronic nose and electronic tongue for detection of mixed edible-oil. J. Sens. 2014 (2014)

    Google Scholar 

  10. Del Valle, M.: Sensor arrays and electronic tongue systems. Int. J. Electrochem. 2012 (2012)

    Google Scholar 

  11. Bhattacharyya, Nabarun., Bandyopadhyay, Rajib., Bhuyan, Manabendra., Tudu, Bipan., Ghosh, Devdulal, Jana, Arun: Electronic nose for black tea classification and correlation of measurements with “Tea Taster” marks. IEEE Trans. Instrum. Meas. 57(7), 1313–1321 (2008)

    Article  Google Scholar 

  12. Kumar, S., Ghosh, A., Tudu, B., Bandyopadhyay, R.: An equivalent electrical network of an electronic tongue: a case study with tea samples. In: 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), pp. 1–3. IEEE (2017)

    Google Scholar 

  13. D’Amico, A., Di Natale, C., Falconi, C., Martinelli, E., Paolesse, R., Pennazza, G., Santonico, M., Jason Sterk, P.: Detection and identification of cancers by the electronic nose. Expert Opin. Med. Diagn. 6(3), 175–185 (2012)

    Google Scholar 

  14. Rosa, Di., Rita, Ambra., Leone, Francesco., Cheli, Federica, Chiofalo, Vincenzo: Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment—a review. J. Food Eng. 210, 62–75 (2017)

    Article  Google Scholar 

  15. Garcia-Breijo, E., Masot Peris, R., Olguín Pinatti, C., Alcañiz Fillol, M., Ibáñez Civera, J., Bataller Prats, R.: Low-cost electronic tongue system and its application to explosive detection. IEEE Trans. Instrum. Meas. 62(2), 424–431 (2012)

    Google Scholar 

  16. Haddi, Z., Mabrouk, S., Bougrini, M., Tahri, K., Sghaier, K., Barhoumi, H., El Bari, N., Maaref, A., Jaffrezic-Renault, N., Bouchikhi, B.: E-Nose and e-Tongue combination for improved recognition of fruit juice samples. Food Chem. 150, 246–253 (2014)

    Google Scholar 

  17. Heidarbeigi, K., Saeid Mohtasebi, S., Foroughirad, A., Mahdi Ghasemi-Varnamkhasti, Rafiee, S., Rezaei, K.: Detection of adulteration in saffron samples using electronic nose. Int. J. Food Prop. 18(7), 1391–1401 (2015)

    Google Scholar 

  18. Kiani, S., Minaei, S., Ghasemi-Varnamkhasti, M.: Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: a review. J. Appl. Res. Med. Aromatic Plants 3(1), 1–9 (2016)

    Article  Google Scholar 

  19. Westenbrink, E., Arasaradnam, R.P., O’Connell, N., Bailey, C., Nwokolo, C., Dev Bardhan, K., Covington, J.A.: Development and application of a new electronic nose instrument for the detection of colorectal cancer. Biosens. Bioelectron. 67, 733–738 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aramita De Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Das, A., Pramanik, A. (2021). Evolution of E-Sensing Technology. In: Bhattacharjee, D., Kole, D.K., Dey, N., Basu, S., Plewczynski, D. (eds) Proceedings of International Conference on Frontiers in Computing and Systems. Advances in Intelligent Systems and Computing, vol 1255. Springer, Singapore. https://doi.org/10.1007/978-981-15-7834-2_53

Download citation

Publish with us

Policies and ethics