Skip to main content

Compact High Gain 28 GHz Concentric Circular Director Low-Cost Antenna for 5G Millimeter-Wave Communication

  • Conference paper
  • First Online:
Evolving Technologies for Computing, Communication and Smart World

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 694))

Abstract

A novel high-gain concentric circular millimeter-wave patch antenna is presented. The antenna finds its application for high-speed 5G mmWave communication utilizing the licensed band of 28 GHz. The antenna has a better directivity and achieves a peak gain of 10 dBi for both E and H planes. The antenna is designed on 0.787 mm Rogers RT/duroid square substrate having a side dimension of 20 mm. The full dimension of the proposed antenna is 20 × 20 × 0.787 mm3. The antenna presented resonates at 28 GHz with a return loss value of −24.69 dB and has an impedance bandwidth of 29%. The presented antenna is a low-cost planar structure, and its peak gain is independent for horizontal and vertical polarization. The concentric circular geometry of the proposed antenna makes the vector E-field of antenna to propagate in such a way that the antenna achieves a better directive gain, impedance matching, and a dual polarization. The parameters such as surface current of the radiating structure, polar gain plot, normalized gain are also discussed. The better performance of the presented antenna in connection with return loss, peak gain, impedance matching, radiation pattern, directivity, and impedance bandwidth makes the proposed antenna a novel candidate to be used for 28 GHz mmWave communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rappaport TS, Mayzus RH, Zhao S (2013) Millimeter-wave mobile communications for 5G: It will work! IEEE Access 1(1):335–349

    Article  Google Scholar 

  2. Ayanoglu E, Swindlehurst AL, Heydari P, Capolino F (2014) Millimeter-wave massive MIMO: the next wireless revolution. IEEE Commun Mag 52(9):56–62

    Article  Google Scholar 

  3. Kim Y, Lee H (2016) Feasibility of Mobile Cellular Com. at millimeter wave frequency. IEEE J Sel Top Signal Process 10(3):589–599

    Google Scholar 

  4. Roh W, Park J, Park JH, Seol JY (2014) Millimeter-wave beam-forming as an enabling tech. for 5G cellular commun.: theoretical feasibility & prototype results. IEEE Com Mag 52(2):106–113

    Google Scholar 

  5. Li M, Luk KM (2015) Wideband 60-GHz magneto-electric dipole ant. for mmWave communications. IEEE Trans Antennas Propa 63(7):3276–3279

    Google Scholar 

  6. Wang H, Fang DG, Zhang B, Che WQ (2010) Dielectric loaded substrate integrated waveguide H-plane horn antennas. IEEE Trans Antennas Propag 58(3):640–647

    Article  Google Scholar 

  7. Yang TY, Hong W, Zhang Y (2014) Wideband millimeter-wave SIW cavity-backed rectangular patch antenna. IEEE Antennas Wirel Propa Lett 13(13):205–208

    Article  Google Scholar 

  8. Zhang Y, Qing X, Chen ZN, Hong W (2011) Wideband mmWave substrate integrated waveguide slotted narrow-wall fed cavity antennas. IEEE Transcs Antennas Propag 59(5):1488–1496

    Article  Google Scholar 

  9. Ghiotto A, Parment F, Wu K, Vuong TP (2016) Millimeter-wave air-filled substrate integrated waveguide anti-podal linearly tapered slot antenna. IEEE Anten Wirel Propag Lett 24(5):1–4

    Google Scholar 

  10. Wu K, Djerafi T (2012) Corrugated SIW antipodal linearly tapered slot antenna array fed by Quasi-triangular pow. Divider Propag Electrom Res 26(5):139–151

    Google Scholar 

  11. Antenna Patterns and Their Meaning, http://www.cisco.com/c/en/us/products/collateral/wireless/aironet-antennasaccessories/prodwhitepaper0900aecd806a1a3e.html. Last accessed 2019-12-21

  12. Kuikui F (2018) Wideband horizontally polarized omni-directional antenna with a conical beam for millimeter-wave applications. IEEE Transa Antennas Propag 66(9):4437–4448

    Article  Google Scholar 

  13. Wani Z, Mahesh P, Koul K (2019) Millimeter-wave antenna with wide-scan angle radiation characteristics for MIMO applications. Int J Radio Freq Microw Comput-Aided Eng 29(5):2–6

    Google Scholar 

  14. Yang B (2017) Compact tapered slot millimeter-wave antenna array for 5G massive MIMO systems. IEEE Trans Antennas Propag 65(12):6721–6727

    Article  Google Scholar 

  15. Kumar A, Mahendra MS, Rajendra PY (2019) Dual wideband circular polarized CPW-fed strip and slots loaded compact square slot antenna for wireless and satellite applications. AEU-Int J Electron Commun 108:181–188

    Article  Google Scholar 

  16. Tiwari RN, Singh P, Kanaujia BK, Barman PB (2019) Wideband monopole planar antenna with stepped ground plane for WLAN/WiMAX applications. In: Singh P, Paprzycki M, Bhargava B, Chhabra J, Kaushal N, Kumar Y (eds) FTNCT 2018, communications in computer and information science, vol 958. Springer, Singapore, pp 253–264

    Google Scholar 

  17. Zhou Z, Wei Z, Tang Z, Yin Y (2019) Design and analysis of a wideband multiple-microstrip dipole antenna with high isolation. IEEE Antennas Wirel Propag Lett 18(4):722–726

    Article  Google Scholar 

  18. Tang MC, Li D, Chen X, Wang Y, Hu K, Ziolkowski RW (2019) Compact, wideband, planar filtenna with reconfigurable tri-polarization diversity. IEEE Trans Antennas Propag 67(8):5689–5694

    Article  Google Scholar 

  19. Wang J, Lu WB, Liu ZG, Zhang AQ, Chen H (2019) Graphene-based microwave antennas with reconfigurable pattern. IEEE Trans Antennas Propag 68(4):2504–2510

    Article  Google Scholar 

  20. Hussain S, Qu SW, Zhou WL, Zhang P, Yang S (2020) Design and fabrication of wideband dual-polarized dipole array for 5G wireless systems. IEEE Access 8:65155–65163

    Article  Google Scholar 

  21. Wu GB, Zeng YS, Chan KF, Chen BJ, Qu SW, Chan CH (2020) High-gain filtering reflectarray antenna for millimeter-wave applications. IEEE Trans Antennas Propag 68(2):805–812

    Article  Google Scholar 

  22. Ghazizadeh MH, Fakharzadeh M (2016) 60 GHz omni-directional segmented loop antenna. IEEE Int Symp Antennas Propag 1653–1654

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raqeebur Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rehman, R., Sheikh, J.A. (2021). Compact High Gain 28 GHz Concentric Circular Director Low-Cost Antenna for 5G Millimeter-Wave Communication. In: Singh, P.K., Noor, A., Kolekar, M.H., Tanwar, S., Bhatnagar, R.K., Khanna, S. (eds) Evolving Technologies for Computing, Communication and Smart World. Lecture Notes in Electrical Engineering, vol 694. Springer, Singapore. https://doi.org/10.1007/978-981-15-7804-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7804-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7803-8

  • Online ISBN: 978-981-15-7804-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics