US Food and Drug Administration. Humanitarian device exemption. Accessed 27 March 2018. https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/PremarketSubmissions/HumanitarianDeviceExemption/.
Humayun MS, Dorn JD, Da Cruz L, Dagnelie G, Sahel J-A, Stanga PE, et al. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology. 2012;119(4):779–88.
CrossRef
Google Scholar
Grüsser OJ, Hagner M. On the history of deformation phosphenes and the idea of internal light generated in the eye for the purpose of vision. Doc Ophthalmol. 1990;74(1–2):57–85. PubMed PMID: 2209368. eng.
Google Scholar
Foerster O. Beitrage zur Pathophysiologie der Sehbahn und der Sehsphare. J Psychol Neurol, Lpz. 1929;39:463.
Google Scholar
Krause F, Schum H. Die epileptischen Erkrankungen. Neue Deutsche Chirurgie. 1931;49:482–6.
Google Scholar
Brindley GS, Lewin W. The sensations produced by electrical stimulation of the visual cortex. J Physiol. 1968;196(2):479–93.
CAS
CrossRef
Google Scholar
Dobelle WH, Mladejovsky M, Girvin J. Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science. 1974;183(4123):440–4.
CAS
CrossRef
Google Scholar
Humayun M, Propst R, de Juan E, McCormick K, Hickingbotham D. Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol. 1994;112(1):110–6.
CAS
CrossRef
Google Scholar
Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci. 2003;44(12):5362–9.
CrossRef
Google Scholar
De Balthasar C, Patel S, Roy A, Freda R, Greenwald S, Horsager A, et al. Factors affecting perceptual thresholds in epiretinal prostheses. Invest Ophthalmol Vis Sci. 2008;49(6):2303–14.
CrossRef
Google Scholar
Horsager A, Greenwald SH, Weiland JD, Humayun MS, Greenberg RJ, McMahon MJ, et al. Predicting visual sensitivity in retinal prosthesis patients. Invest Ophthalmol Vis Sci. 2009;50(4):1483–91.
CrossRef
Google Scholar
Nanduri D, Fine I, Horsager A, Boynton GM, Humayun MS, Greenberg RJ, et al. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. Invest Ophthalmol Vis Sci. 2012;53(1):205–14.
CrossRef
Google Scholar
Nanduri D, Humayun M, Greenberg R, McMahon M, Weiland J. Retinal prosthesis phosphene shape analysis. In: Engineering in Medicine and Biology Society, 2008 EMBS 2008 30th Annual International Conference of the IEEE. IEEE; 2008.
Google Scholar
Yue L, Falabella P, Christopher P, Wuyyuru V, Dorn J, Schor P, et al. Ten-year follow-up of a blind patient chronically implanted with epiretinal prosthesis Argus I. Ophthalmology. 2015;122(12):2545–52.e1.
CrossRef
Google Scholar
Opie NL, Burkitt AN, Meffin H, Grayden DB. Heating of the eye by a retinal prosthesis: modeling, cadaver and in vivo study. IEEE Trans Biomed Eng. 2012;59(2):339–45.
CrossRef
Google Scholar
Cha K, Horch KW, Normann RA. Mobility performance with a pixelized vision system. Vis Res. 1992;32(7):1367–72.
CAS
CrossRef
Google Scholar
Cha K, Horch KW, Normann RA, Boman DK. Reading speed with a pixelized vision system. J Opt Soc Am A. 1992;9(5):673–7.
CAS
CrossRef
Google Scholar
Sommerhalder J, Rappaz B, de Haller R, Fornos AP, Safran AB, Pelizzone M. Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vis Res. 2004;44(14):1693–706.
CrossRef
Google Scholar
Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309.
CAS
CrossRef
Google Scholar
Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141(2):171–98.
CrossRef
Google Scholar
Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke A, Chichilnisky E. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J Neurophysiol. 2006;95(6):3311–27.
CrossRef
Google Scholar
Suesserman MF, Spelman FA, Rubinstein JT. In vitro measurement and characterization of current density profiles produced by nonrecessed, simple recessed, and radially varying recessed stimulating electrodes. IEEE Trans Biomed Eng. 1991;38(5):401–8.
CAS
CrossRef
Google Scholar
Wilke R, Moghadam GK, Lovell N, Suaning G, Dokos S. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants. J Neural Eng. 2011;8(4):046016.
CAS
CrossRef
Google Scholar
Palanker D, Vankov A, Huie P, Baccus S. Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng. 2005;2(1):S105.
CrossRef
Google Scholar
Habib AG, Cameron MA, Suaning GJ, Lovell NH, Morley JW. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration. J Neural Eng. 2013;10(3):036013.
CrossRef
Google Scholar
Liu Y, Park J, Lang RJ, Emami-Neyestanak A, Pellegrino S, Humayun MS, et al. Parylene origami structure for intraocular implantation. In: 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE; 2013.
Google Scholar
Behrend MR, Ahuja AK, Humayun MS, Chow RH, Weiland JD. Resolution of the epiretinal prosthesis is not limited by electrode size. IEEE Trans Neural Syst Rehabil Eng. 2011;19(4):436–42.
CrossRef
Google Scholar
Eckhorn R, Wilms M, Schanze T, Eger M, Hesse L, Eysel UT, et al. Visual resolution with retinal implants estimated from recordings in cat visual cortex. Vis Res. 2006;46(17):2675–90.
CrossRef
Google Scholar
Zhu J, Yang J. Subpixel eye gaze tracking. fgr. IEEE; 2002.
Google Scholar
Dagnelie G, Keane P, Narla V, Yang L, Weiland J, Humayun M. Real and virtual mobility performance in simulated prosthetic vision. J Neural Eng. 2007;4(1):S92.
CrossRef
Google Scholar
Weiland JD, Humayun MS. Retinal prosthesis. IEEE Trans Biomed Eng. 2014;61(5):1412–24.
CrossRef
Google Scholar
Ameri H, Ratanapakorn T, Ufer S, Eckhardt H, Humayun MS, Weiland JD. Toward a wide-field retinal prosthesis. J Neural Eng. 2009;6(3):035002.
CrossRef
Google Scholar
Hayes JS, Yin VT, Piyathaisere D, Weiland JD, Humayun MS, Dagnelie G. Visually guided performance of simple tasks using simulated prosthetic vision. Artif Organs. 2003;27(11):1016–28.
CrossRef
Google Scholar
Sahel J, Mohand-Said S, Stanga P, Caspi A, Greenberg R. Acuboost™: enhancing the maximum acuity of the Argus II retinal prosthesis system. Invest Ophthalmol Vis Sci. 2013;54(15):1389.
Google Scholar
Freeman DK, Fried SI. Multiple components of ganglion cell desensitization in response to prosthetic stimulation. J Neural Eng. 2011;8(1):016008.
CrossRef
Google Scholar
Jensen RJ, Rizzo JF III. Responses of ganglion cells to repetitive electrical stimulation of the retina. J Neural Eng. 2007;4(1):S1.
CrossRef
Google Scholar
Ahuja AK, Behrend MR, Kuroda M, Humayun MS, Weiland JD. An in vitro model of a retinal prosthesis. IEEE Trans Biomed Eng. 2008;55(6):1744–53.
CrossRef
Google Scholar
Stronks HC, Dagnelie G. The functional performance of the Argus II retinal prosthesis. Expert Rev Med Devices. 2014;11(1):23–30.
CAS
CrossRef
Google Scholar
Fornos AP, Sommerhalder J, da Cruz L, Sahel JA, Mohand-Said S, Hafezi F, et al. Temporal properties of visual perception on electrical stimulation of the retina. Invest Ophthalmol Vis Sci. 2012;53(6):2720–31.
CrossRef
Google Scholar
Freeman DK, Eddington DK, Rizzo JF III, Fried SI. Selective activation of neuronal targets with sinusoidal electric stimulation. J Neurophysiol. 2010;104(5):2778–91.
CrossRef
Google Scholar
Fried SI, Hsueh H-A, Werblin FS. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. J Neurophysiol. 2006;95(2):970–8.
CAS
CrossRef
Google Scholar
Margalit E, Thoreson WB. Inner retinal mechanisms engaged by retinal electrical stimulation. Invest Ophthalmol Vis Sci. 2006;47(6):2606–12.
CrossRef
Google Scholar
Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky E. High-resolution electrical stimulation of primate retina for epiretinal implant design. J Neurosci. 2008;28(17):4446–56.
CAS
CrossRef
Google Scholar
Jepson LH, Hottowy P, Mathieson K, Gunning DE, Dąbrowski W, Litke AM, et al. Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses. J Neurosci. 2013;33(17):7194–205.
CAS
CrossRef
Google Scholar
Jensen RJ, Rizzo JF III. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. Exp Eye Res. 2006;83(2):367–73.
CAS
CrossRef
Google Scholar
Lilly JC, Hughes JR, Alvord EC Jr, Galkin TW. Brief, noninjurious electric waveform for stimulation of the brain. Science. 1955;121(3144):468–9.
CAS
CrossRef
Google Scholar
Lilly JC, Austin GM, Chambers WW. Threshold movements produced by excitation of cerebral cortex and efferent fibers with some parametric regions of rectangular current pulses (cats and monkeys). J Neurophysiol. 1952;15(4):319–41.
CAS
CrossRef
Google Scholar
Mortimer JT, Shealy CN, Wheeler C. Experimental nondestructive electrical stimulation of the brain and spinal cord. J Neurosurg. 1970;32(5):553–9.
CAS
CrossRef
Google Scholar
Brummer S, Turner M. Electrical stimulation of the nervous system: the principle of safe charge injection with noble metal electrodes. Bioelectrochem Bioenerg. 1975;2(1):13–25.
CAS
CrossRef
Google Scholar
Zhou DD, Dorn JD, Greenberg RJ. The Argus® II retinal prosthesis system: an overview. In: 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). IEEE; 2013.
Google Scholar
Weiland JD, Anderson DJ, Humayun MS. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans Biomed Eng. 2002;49(12):1574–9.
CrossRef
Google Scholar
Cohen E, Agrawal A, Connors M, Hansen B, Charkhkar H, Pfefer J. Optical coherence tomography imaging of retinal damage in real time under a stimulus electrode. J Neural Eng. 2011;8(5):056017.
CrossRef
Google Scholar
Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368(9549):1795–809.
CAS
CrossRef
Google Scholar
Grover S, Fishman GA, Anderson RJ, Tozatti MS, Heckenlively JR, Weleber RG, et al. Visual acuity impairment in patients with retinitis pigmentosa at age 45 years or older. Ophthalmology. 1999;106(9):1780–5.
CAS
CrossRef
Google Scholar
Santos A, Humayun MS, de Juan E, Greenburg RJ, Marsh MJ, Klock IB, et al. Preservation of the inner retina in retinitis pigmentosa: a morphometric analysis. Arch Ophthalmol. 1997;115(4):511–5.
CAS
CrossRef
Google Scholar
Guadagni V, Novelli E, Piano I, Gargini C, Strettoi E. Pharmacological approaches to retinitis pigmentosa: a laboratory perspective. Prog Retin Eye Res. 2015;48:62–81.
CAS
CrossRef
Google Scholar
Ahuja AK, Behrend MR. The Argus™ II retinal prosthesis: factors affecting patient selection for implantation. Prog Retin Eye Res. 2013;36:1–23.
CrossRef
Google Scholar
Ghodasra DH, Chen A, Arevalo JF, Birch DG, Branham K, Coley B, et al. Worldwide Argus II implantation: recommendations to optimize patient outcomes. BMC Ophthalmol. 2016;16(1):52.
CrossRef
Google Scholar
Xie J, Wang G-J, Yow L, Cela CJ, Humayun MS, Weiland JD, et al. Modeling and percept of transcorneal electrical stimulation in humans. IEEE Trans Biomed Eng. 2011;58(7):1932–9.
CrossRef
Google Scholar
Finn AP, Grewal DS, Vajzovic L. Argus II retinal prosthesis system: a review of patient selection criteria, surgical considerations, and post-operative outcomes. Clin Ophthalmol (Auckland, NZ). 2018;12:1089.
CrossRef
Google Scholar
Rizzo S, Belting C, Cinelli L, Allegrini L, Genovesi-Ebert F, Barca F, et al. The Argus II Retinal Prosthesis: 12-month outcomes from a single-study center. Am J Ophthalmol. 2014;157(6):1282–90.
CrossRef
Google Scholar
Rachitskaya AV, Yuan A, Marino MJ, Reese J, Ehlers JP. Intraoperative OCT imaging of the Argus II retinal prosthesis system. Ophthalmic Surg Lasers Imaging Retina. 2016;47(11):999–1003.
CrossRef
Google Scholar
Markowitz M, Rankin M, Mongy M, Patino BE, Manusow J, Devenyi RG, et al. Rehabilitation of lost functional vision with the Argus II retinal prosthesis. Can J Ophthalmol. 2018;53(1):14–22.
CrossRef
Google Scholar
Ahuja AK, Dorn J, Caspi A, McMahon M, Dagnelie G, Stanga P, et al. Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol. 2011;95(4):539–43.
CAS
CrossRef
Google Scholar
Sabbah N, Authié CN, Sanda N, Mohand-Said S, Sahel J-A, Safran AB. Importance of eye position on spatial localization in blind subjects wearing an Argus II retinal prosthesis. Invest Ophthalmol Vis Sci. 2014;55(12):8259–66.
CrossRef
Google Scholar
Luo YH-L, Zhong JJ, Da Cruz L. The use of Argus® II retinal prosthesis by blind subjects to achieve localisation and prehension of objects in 3-dimensional space. Graefes Arch Clin Exp Ophthalmol. 2015;253(11):1907–14.
CrossRef
Google Scholar
Weiland JD, Cho AK, Humayun MS. Retinal prostheses: current clinical results and future needs. Ophthalmology. 2011;118(11):2227–37.
CrossRef
Google Scholar
Ho AC, Humayun MS, Dorn JD, Da Cruz L, Dagnelie G, Handa J, et al. Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology. 2015;122(8):1547–54.
CrossRef
Google Scholar
da Cruz L, Dorn JD, Humayun MS, Dagnelie G, Handa J, Barale P-O, et al. Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology. 2016;123(10):2248–54.
CrossRef
Google Scholar
Gregori NZ, Callaway NF, Hoeppner C, Yuan A, Rachitskaya A, Feuer W, et al. Retinal anatomy and electrode array position in retinitis pigmentosa patients after Argus II implantation: an international study. Am J Ophthalmol. 2018;193:87–99.
CrossRef
Google Scholar
Devenyi RG, Manusow J, Patino BE, Mongy M, Markowitz M, Markowitz SN. The Toronto experience with the Argus II retinal prosthesis: new technology, new hope for patients. Can J Ophthalmol. 2018;53(1):9–13.
CrossRef
Google Scholar
da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol. 2013;97(5):632–6. https://doi.org/10.1136/bjophthalmol-2012-301525.
CrossRef
Google Scholar
Yoon YH, Kim YJ, Humayun MS. Use of intraoperative OCT in ensuring optimal array-retina contact during argus ii implantation surgery—video presentation. American Academy of Ophthalmology 2018; 2018 October 26; McCormic Place, Chicago, IL, USA.
Google Scholar
Geruschat DR, Flax M, Tanna N, Bianchi M, Fisher A, Goldschmidt M, et al. FLORA™: phase I development of a functional vision assessment for prosthetic vision users. Clin Exp Optom. 2015;98(4):342–7.
CrossRef
Google Scholar
Geruschat DR, Richards TP, Arditi A, da Cruz L, Dagnelie G, Dorn JD, et al. An analysis of observer-rated functional vision in patients implanted with the Argus II Retinal Prosthesis System at three years. Clin Exp Optom. 2016;99(3):227–32.
CrossRef
Google Scholar
Dagnelie G, Christopher P, Arditi A, da Cruz L, Duncan JL, Ho AC, et al. Performance of real-world functional vision tasks by blind subjects improves after implantation with the Argus® II retinal prosthesis system. Clin Exp Ophthalmol. 2017;45(2):152–9.
CrossRef
Google Scholar
Barry MP, Dagnelie G. Use of the Argus II retinal prosthesis to improve visual guidance of fine hand movements. Invest Ophthalmol Vis Sci. 2012;53(9):5095–101.
CrossRef
Google Scholar
Caspi A, Roy A, Wuyyuru V, Rosendall PE, Harper JW, Katyal KD, et al. Eye movement control in the Argus II retinal-prosthesis enables reduced head movement and better localization precision. Invest Ophthalmol Vis Sci. 2018;59(2):792–802.
CrossRef
Google Scholar
Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc R Soc B. 2013;280(1757):20130077.
CrossRef
Google Scholar
Wang L, Mathieson K, Kamins TI, Loudin JD, Galambos L, Goetz G, et al. Photovoltaic retinal prosthesis: implant fabrication and performance. J Neural Eng. 2012;9(4):046014.
CrossRef
Google Scholar
Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, et al. Subretinal visual implant alpha IMS–clinical trial interim report. Vis Res. 2015;111:149–60.
CrossRef
Google Scholar
Dacey DM. Physiology, morphology and spatial densities of identified ganglion cell types in primate retina. Ciba Found Symp. 1994;184:12–70. https://doi.org/10.1002/9780470514610.ch2.
Trenholm S, Roska B. Cell-type-specific electric stimulation for vision restoration. Neuron. 2014;83(1):1–2.
CAS
CrossRef
Google Scholar