Skip to main content

Argus II Prosthetic Vision

Abstract

The Argus II Retinal Prosthesis is the first, and to date only, artificial visual implant commercially approved by the U.S. Food and Drug Administration (FDA). It is indicated for patients with end-stage retinitis pigmentosa (RP) in both eyes.

The Argus II system includes an external component, which consists of a camera, a video processing unit and a transmitting coil, and an internal component, which consists of a receiving coil, an electronics case, and the epiretinal microelectrode array. Images captured by the camera are converted to electronic signals, and then wirelessly transmitted to the implant. The signals are recovered by the internal electronics and delivered to the microelectrode array, where electrical stimulation pulses induce cellular responses in the retina.

Careful preoperative evaluation and accurate operative procedures are the key in achieving the optimal effect of this implant. Candidates for surgery must be carefully selected to ensure that they fulfill the surgical inclusion criteria and have realistic expectations of the level of vision they might gain, and they must be fully committed to undergoing visual rehabilitation and training with Argus II after surgery.

In this chapter, we cover the biomedical engineering aspects as well as the clinical aspects of the Argus II retinal prosthesis, including a brief discussion of the future development and perspectives.

Keywords

  • Argus II retinal prosthesis
  • Artificial vision
  • Retinitis pigmentosa
  • Implantation surgery
  • Clinical outcomes

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-7644-7_34
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-7644-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 34.1
Fig. 34.2
Fig. 34.3
Fig. 34.4
Fig. 34.5
Fig. 34.6
Fig. 34.7
Fig. 34.8
Fig. 34.9
Fig. 34.10
Fig. 34.11

References

  1. US Food and Drug Administration. Humanitarian device exemption. Accessed 27 March 2018. https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYourDevice/PremarketSubmissions/HumanitarianDeviceExemption/.

  2. Humayun MS, Dorn JD, Da Cruz L, Dagnelie G, Sahel J-A, Stanga PE, et al. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology. 2012;119(4):779–88.

    CrossRef  Google Scholar 

  3. Grüsser OJ, Hagner M. On the history of deformation phosphenes and the idea of internal light generated in the eye for the purpose of vision. Doc Ophthalmol. 1990;74(1–2):57–85. PubMed PMID: 2209368. eng.

    Google Scholar 

  4. Foerster O. Beitrage zur Pathophysiologie der Sehbahn und der Sehsphare. J Psychol Neurol, Lpz. 1929;39:463.

    Google Scholar 

  5. Krause F, Schum H. Die epileptischen Erkrankungen. Neue Deutsche Chirurgie. 1931;49:482–6.

    Google Scholar 

  6. Brindley GS, Lewin W. The sensations produced by electrical stimulation of the visual cortex. J Physiol. 1968;196(2):479–93.

    CAS  CrossRef  Google Scholar 

  7. Dobelle WH, Mladejovsky M, Girvin J. Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science. 1974;183(4123):440–4.

    CAS  CrossRef  Google Scholar 

  8. Humayun M, Propst R, de Juan E, McCormick K, Hickingbotham D. Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol. 1994;112(1):110–6.

    CAS  CrossRef  Google Scholar 

  9. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci. 2003;44(12):5362–9.

    CrossRef  Google Scholar 

  10. De Balthasar C, Patel S, Roy A, Freda R, Greenwald S, Horsager A, et al. Factors affecting perceptual thresholds in epiretinal prostheses. Invest Ophthalmol Vis Sci. 2008;49(6):2303–14.

    CrossRef  Google Scholar 

  11. Horsager A, Greenwald SH, Weiland JD, Humayun MS, Greenberg RJ, McMahon MJ, et al. Predicting visual sensitivity in retinal prosthesis patients. Invest Ophthalmol Vis Sci. 2009;50(4):1483–91.

    CrossRef  Google Scholar 

  12. Nanduri D, Fine I, Horsager A, Boynton GM, Humayun MS, Greenberg RJ, et al. Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. Invest Ophthalmol Vis Sci. 2012;53(1):205–14.

    CrossRef  Google Scholar 

  13. Nanduri D, Humayun M, Greenberg R, McMahon M, Weiland J. Retinal prosthesis phosphene shape analysis. In: Engineering in Medicine and Biology Society, 2008 EMBS 2008 30th Annual International Conference of the IEEE. IEEE; 2008.

    Google Scholar 

  14. Yue L, Falabella P, Christopher P, Wuyyuru V, Dorn J, Schor P, et al. Ten-year follow-up of a blind patient chronically implanted with epiretinal prosthesis Argus I. Ophthalmology. 2015;122(12):2545–52.e1.

    CrossRef  Google Scholar 

  15. Opie NL, Burkitt AN, Meffin H, Grayden DB. Heating of the eye by a retinal prosthesis: modeling, cadaver and in vivo study. IEEE Trans Biomed Eng. 2012;59(2):339–45.

    CrossRef  Google Scholar 

  16. Cha K, Horch KW, Normann RA. Mobility performance with a pixelized vision system. Vis Res. 1992;32(7):1367–72.

    CAS  CrossRef  Google Scholar 

  17. Cha K, Horch KW, Normann RA, Boman DK. Reading speed with a pixelized vision system. J Opt Soc Am A. 1992;9(5):673–7.

    CAS  CrossRef  Google Scholar 

  18. Sommerhalder J, Rappaz B, de Haller R, Fornos AP, Safran AB, Pelizzone M. Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vis Res. 2004;44(14):1693–706.

    CrossRef  Google Scholar 

  19. Cogan SF. Neural stimulation and recording electrodes. Annu Rev Biomed Eng. 2008;10:275–309.

    CAS  CrossRef  Google Scholar 

  20. Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods. 2005;141(2):171–98.

    CrossRef  Google Scholar 

  21. Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke A, Chichilnisky E. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. J Neurophysiol. 2006;95(6):3311–27.

    CrossRef  Google Scholar 

  22. Suesserman MF, Spelman FA, Rubinstein JT. In vitro measurement and characterization of current density profiles produced by nonrecessed, simple recessed, and radially varying recessed stimulating electrodes. IEEE Trans Biomed Eng. 1991;38(5):401–8.

    CAS  CrossRef  Google Scholar 

  23. Wilke R, Moghadam GK, Lovell N, Suaning G, Dokos S. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants. J Neural Eng. 2011;8(4):046016.

    CAS  CrossRef  Google Scholar 

  24. Palanker D, Vankov A, Huie P, Baccus S. Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng. 2005;2(1):S105.

    CrossRef  Google Scholar 

  25. Habib AG, Cameron MA, Suaning GJ, Lovell NH, Morley JW. Spatially restricted electrical activation of retinal ganglion cells in the rabbit retina by hexapolar electrode return configuration. J Neural Eng. 2013;10(3):036013.

    CrossRef  Google Scholar 

  26. Liu Y, Park J, Lang RJ, Emami-Neyestanak A, Pellegrino S, Humayun MS, et al. Parylene origami structure for intraocular implantation. In: 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE; 2013.

    Google Scholar 

  27. Behrend MR, Ahuja AK, Humayun MS, Chow RH, Weiland JD. Resolution of the epiretinal prosthesis is not limited by electrode size. IEEE Trans Neural Syst Rehabil Eng. 2011;19(4):436–42.

    CrossRef  Google Scholar 

  28. Eckhorn R, Wilms M, Schanze T, Eger M, Hesse L, Eysel UT, et al. Visual resolution with retinal implants estimated from recordings in cat visual cortex. Vis Res. 2006;46(17):2675–90.

    CrossRef  Google Scholar 

  29. Zhu J, Yang J. Subpixel eye gaze tracking. fgr. IEEE; 2002.

    Google Scholar 

  30. Dagnelie G, Keane P, Narla V, Yang L, Weiland J, Humayun M. Real and virtual mobility performance in simulated prosthetic vision. J Neural Eng. 2007;4(1):S92.

    CrossRef  Google Scholar 

  31. Weiland JD, Humayun MS. Retinal prosthesis. IEEE Trans Biomed Eng. 2014;61(5):1412–24.

    CrossRef  Google Scholar 

  32. Ameri H, Ratanapakorn T, Ufer S, Eckhardt H, Humayun MS, Weiland JD. Toward a wide-field retinal prosthesis. J Neural Eng. 2009;6(3):035002.

    CrossRef  Google Scholar 

  33. Hayes JS, Yin VT, Piyathaisere D, Weiland JD, Humayun MS, Dagnelie G. Visually guided performance of simple tasks using simulated prosthetic vision. Artif Organs. 2003;27(11):1016–28.

    CrossRef  Google Scholar 

  34. Sahel J, Mohand-Said S, Stanga P, Caspi A, Greenberg R. Acuboost™: enhancing the maximum acuity of the Argus II retinal prosthesis system. Invest Ophthalmol Vis Sci. 2013;54(15):1389.

    Google Scholar 

  35. Freeman DK, Fried SI. Multiple components of ganglion cell desensitization in response to prosthetic stimulation. J Neural Eng. 2011;8(1):016008.

    CrossRef  Google Scholar 

  36. Jensen RJ, Rizzo JF III. Responses of ganglion cells to repetitive electrical stimulation of the retina. J Neural Eng. 2007;4(1):S1.

    CrossRef  Google Scholar 

  37. Ahuja AK, Behrend MR, Kuroda M, Humayun MS, Weiland JD. An in vitro model of a retinal prosthesis. IEEE Trans Biomed Eng. 2008;55(6):1744–53.

    CrossRef  Google Scholar 

  38. Stronks HC, Dagnelie G. The functional performance of the Argus II retinal prosthesis. Expert Rev Med Devices. 2014;11(1):23–30.

    CAS  CrossRef  Google Scholar 

  39. Fornos AP, Sommerhalder J, da Cruz L, Sahel JA, Mohand-Said S, Hafezi F, et al. Temporal properties of visual perception on electrical stimulation of the retina. Invest Ophthalmol Vis Sci. 2012;53(6):2720–31.

    CrossRef  Google Scholar 

  40. Freeman DK, Eddington DK, Rizzo JF III, Fried SI. Selective activation of neuronal targets with sinusoidal electric stimulation. J Neurophysiol. 2010;104(5):2778–91.

    CrossRef  Google Scholar 

  41. Fried SI, Hsueh H-A, Werblin FS. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. J Neurophysiol. 2006;95(2):970–8.

    CAS  CrossRef  Google Scholar 

  42. Margalit E, Thoreson WB. Inner retinal mechanisms engaged by retinal electrical stimulation. Invest Ophthalmol Vis Sci. 2006;47(6):2606–12.

    CrossRef  Google Scholar 

  43. Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke AM, Chichilnisky E. High-resolution electrical stimulation of primate retina for epiretinal implant design. J Neurosci. 2008;28(17):4446–56.

    CAS  CrossRef  Google Scholar 

  44. Jepson LH, Hottowy P, Mathieson K, Gunning DE, Dąbrowski W, Litke AM, et al. Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses. J Neurosci. 2013;33(17):7194–205.

    CAS  CrossRef  Google Scholar 

  45. Jensen RJ, Rizzo JF III. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. Exp Eye Res. 2006;83(2):367–73.

    CAS  CrossRef  Google Scholar 

  46. Lilly JC, Hughes JR, Alvord EC Jr, Galkin TW. Brief, noninjurious electric waveform for stimulation of the brain. Science. 1955;121(3144):468–9.

    CAS  CrossRef  Google Scholar 

  47. Lilly JC, Austin GM, Chambers WW. Threshold movements produced by excitation of cerebral cortex and efferent fibers with some parametric regions of rectangular current pulses (cats and monkeys). J Neurophysiol. 1952;15(4):319–41.

    CAS  CrossRef  Google Scholar 

  48. Mortimer JT, Shealy CN, Wheeler C. Experimental nondestructive electrical stimulation of the brain and spinal cord. J Neurosurg. 1970;32(5):553–9.

    CAS  CrossRef  Google Scholar 

  49. Brummer S, Turner M. Electrical stimulation of the nervous system: the principle of safe charge injection with noble metal electrodes. Bioelectrochem Bioenerg. 1975;2(1):13–25.

    CAS  CrossRef  Google Scholar 

  50. Zhou DD, Dorn JD, Greenberg RJ. The Argus® II retinal prosthesis system: an overview. In: 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). IEEE; 2013.

    Google Scholar 

  51. Weiland JD, Anderson DJ, Humayun MS. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans Biomed Eng. 2002;49(12):1574–9.

    CrossRef  Google Scholar 

  52. Cohen E, Agrawal A, Connors M, Hansen B, Charkhkar H, Pfefer J. Optical coherence tomography imaging of retinal damage in real time under a stimulus electrode. J Neural Eng. 2011;8(5):056017.

    CrossRef  Google Scholar 

  53. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368(9549):1795–809.

    CAS  CrossRef  Google Scholar 

  54. Grover S, Fishman GA, Anderson RJ, Tozatti MS, Heckenlively JR, Weleber RG, et al. Visual acuity impairment in patients with retinitis pigmentosa at age 45 years or older. Ophthalmology. 1999;106(9):1780–5.

    CAS  CrossRef  Google Scholar 

  55. Santos A, Humayun MS, de Juan E, Greenburg RJ, Marsh MJ, Klock IB, et al. Preservation of the inner retina in retinitis pigmentosa: a morphometric analysis. Arch Ophthalmol. 1997;115(4):511–5.

    CAS  CrossRef  Google Scholar 

  56. Guadagni V, Novelli E, Piano I, Gargini C, Strettoi E. Pharmacological approaches to retinitis pigmentosa: a laboratory perspective. Prog Retin Eye Res. 2015;48:62–81.

    CAS  CrossRef  Google Scholar 

  57. Ahuja AK, Behrend MR. The Argus™ II retinal prosthesis: factors affecting patient selection for implantation. Prog Retin Eye Res. 2013;36:1–23.

    CrossRef  Google Scholar 

  58. Ghodasra DH, Chen A, Arevalo JF, Birch DG, Branham K, Coley B, et al. Worldwide Argus II implantation: recommendations to optimize patient outcomes. BMC Ophthalmol. 2016;16(1):52.

    CrossRef  Google Scholar 

  59. Xie J, Wang G-J, Yow L, Cela CJ, Humayun MS, Weiland JD, et al. Modeling and percept of transcorneal electrical stimulation in humans. IEEE Trans Biomed Eng. 2011;58(7):1932–9.

    CrossRef  Google Scholar 

  60. Finn AP, Grewal DS, Vajzovic L. Argus II retinal prosthesis system: a review of patient selection criteria, surgical considerations, and post-operative outcomes. Clin Ophthalmol (Auckland, NZ). 2018;12:1089.

    CrossRef  Google Scholar 

  61. Rizzo S, Belting C, Cinelli L, Allegrini L, Genovesi-Ebert F, Barca F, et al. The Argus II Retinal Prosthesis: 12-month outcomes from a single-study center. Am J Ophthalmol. 2014;157(6):1282–90.

    CrossRef  Google Scholar 

  62. Rachitskaya AV, Yuan A, Marino MJ, Reese J, Ehlers JP. Intraoperative OCT imaging of the Argus II retinal prosthesis system. Ophthalmic Surg Lasers Imaging Retina. 2016;47(11):999–1003.

    CrossRef  Google Scholar 

  63. Markowitz M, Rankin M, Mongy M, Patino BE, Manusow J, Devenyi RG, et al. Rehabilitation of lost functional vision with the Argus II retinal prosthesis. Can J Ophthalmol. 2018;53(1):14–22.

    CrossRef  Google Scholar 

  64. Ahuja AK, Dorn J, Caspi A, McMahon M, Dagnelie G, Stanga P, et al. Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol. 2011;95(4):539–43.

    CAS  CrossRef  Google Scholar 

  65. Sabbah N, Authié CN, Sanda N, Mohand-Said S, Sahel J-A, Safran AB. Importance of eye position on spatial localization in blind subjects wearing an Argus II retinal prosthesis. Invest Ophthalmol Vis Sci. 2014;55(12):8259–66.

    CrossRef  Google Scholar 

  66. Luo YH-L, Zhong JJ, Da Cruz L. The use of Argus® II retinal prosthesis by blind subjects to achieve localisation and prehension of objects in 3-dimensional space. Graefes Arch Clin Exp Ophthalmol. 2015;253(11):1907–14.

    CrossRef  Google Scholar 

  67. Weiland JD, Cho AK, Humayun MS. Retinal prostheses: current clinical results and future needs. Ophthalmology. 2011;118(11):2227–37.

    CrossRef  Google Scholar 

  68. Ho AC, Humayun MS, Dorn JD, Da Cruz L, Dagnelie G, Handa J, et al. Long-term results from an epiretinal prosthesis to restore sight to the blind. Ophthalmology. 2015;122(8):1547–54.

    CrossRef  Google Scholar 

  69. da Cruz L, Dorn JD, Humayun MS, Dagnelie G, Handa J, Barale P-O, et al. Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology. 2016;123(10):2248–54.

    CrossRef  Google Scholar 

  70. Gregori NZ, Callaway NF, Hoeppner C, Yuan A, Rachitskaya A, Feuer W, et al. Retinal anatomy and electrode array position in retinitis pigmentosa patients after Argus II implantation: an international study. Am J Ophthalmol. 2018;193:87–99.

    CrossRef  Google Scholar 

  71. Devenyi RG, Manusow J, Patino BE, Mongy M, Markowitz M, Markowitz SN. The Toronto experience with the Argus II retinal prosthesis: new technology, new hope for patients. Can J Ophthalmol. 2018;53(1):9–13.

    CrossRef  Google Scholar 

  72. da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol. 2013;97(5):632–6. https://doi.org/10.1136/bjophthalmol-2012-301525.

    CrossRef  Google Scholar 

  73. Yoon YH, Kim YJ, Humayun MS. Use of intraoperative OCT in ensuring optimal array-retina contact during argus ii implantation surgery—video presentation. American Academy of Ophthalmology 2018; 2018 October 26; McCormic Place, Chicago, IL, USA.

    Google Scholar 

  74. Geruschat DR, Flax M, Tanna N, Bianchi M, Fisher A, Goldschmidt M, et al. FLORA™: phase I development of a functional vision assessment for prosthetic vision users. Clin Exp Optom. 2015;98(4):342–7.

    CrossRef  Google Scholar 

  75. Geruschat DR, Richards TP, Arditi A, da Cruz L, Dagnelie G, Dorn JD, et al. An analysis of observer-rated functional vision in patients implanted with the Argus II Retinal Prosthesis System at three years. Clin Exp Optom. 2016;99(3):227–32.

    CrossRef  Google Scholar 

  76. Dagnelie G, Christopher P, Arditi A, da Cruz L, Duncan JL, Ho AC, et al. Performance of real-world functional vision tasks by blind subjects improves after implantation with the Argus® II retinal prosthesis system. Clin Exp Ophthalmol. 2017;45(2):152–9.

    CrossRef  Google Scholar 

  77. Barry MP, Dagnelie G. Use of the Argus II retinal prosthesis to improve visual guidance of fine hand movements. Invest Ophthalmol Vis Sci. 2012;53(9):5095–101.

    CrossRef  Google Scholar 

  78. Caspi A, Roy A, Wuyyuru V, Rosendall PE, Harper JW, Katyal KD, et al. Eye movement control in the Argus II retinal-prosthesis enables reduced head movement and better localization precision. Invest Ophthalmol Vis Sci. 2018;59(2):792–802.

    CrossRef  Google Scholar 

  79. Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc R Soc B. 2013;280(1757):20130077.

    CrossRef  Google Scholar 

  80. Wang L, Mathieson K, Kamins TI, Loudin JD, Galambos L, Goetz G, et al. Photovoltaic retinal prosthesis: implant fabrication and performance. J Neural Eng. 2012;9(4):046014.

    CrossRef  Google Scholar 

  81. Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, et al. Subretinal visual implant alpha IMS–clinical trial interim report. Vis Res. 2015;111:149–60.

    CrossRef  Google Scholar 

  82. Dacey DM. Physiology, morphology and spatial densities of identified ganglion cell types in primate retina. Ciba Found Symp. 1994;184:12–70. https://doi.org/10.1002/9780470514610.ch2.

  83. Trenholm S, Roska B. Cell-type-specific electric stimulation for vision restoration. Neuron. 2014;83(1):1–2.

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hee Yoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Yoon, Y.H., Yue, L., Humayun, M.S. (2020). Argus II Prosthetic Vision. In: Chang, A., Mieler, W.F., Ohji, M. (eds) Macular Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-15-7644-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7644-7_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7642-3

  • Online ISBN: 978-981-15-7644-7

  • eBook Packages: MedicineMedicine (R0)