Skip to main content

Fundamentals of Optical Imaging

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 3233)

Abstract

Optical imaging, which possesses noninvasive and high-resolution features for biomedical imaging, has been used to study various biological samples, from in vitro cells, ex vivo tissue, to in vivo imaging of living organism. Furthermore, optical imaging also covers a very wide scope of spatial scale, from submicron sized organelles to macro-scale live biological samples, enabling it a powerful tool for biomedical studies. Before introducing these superior optical imaging methods to researchers, first of all, it is necessary to present the basic concept of light-matter interactions such as absorption, scattering, and fluorescence, which can be used as the imaging contrast and also affect the imaging quality. And then the working mechanism of various imaging modalities including fluorescence microscopy, confocal microscopy, multiphoton microscopy, super-resolution microscopy, optical coherence tomography (OCT), diffuse optical tomography (DOT), etc. will be presented. Meanwhile, the main features and typical bioimaging applications of these optical imaging technologies are discussed. Finally, the perspective of future optical imaging methods is presented. The aim of this chapter is to introduce the background and principle of optical imaging for grasping the mechanism of advanced optical imaging modalities introduced in the following chapters.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-7627-0_1
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-7627-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10

References

  1. Prasad PN (2003) Introduction to biophotonics. Wiley-Interscience, Hoboken, NJ

    CrossRef  Google Scholar 

  2. Scheffold F (2014) Optical imaging of neocortical dynamics. Springer, New York, NY

    Google Scholar 

  3. Schulz RB, Semmler W (2008) Molecular imaging I. Springer, New York, NY

    Google Scholar 

  4. Niemz MH (2004) Laser-tissue interactions: fundamentals and applications. Springer, Berlin; New York, NY

    Google Scholar 

  5. Lichtman JW, Conchello JA (2005) Fluorescence microscopy. Nat Methods 2(12):910–919

    PubMed  CrossRef  CAS  Google Scholar 

  6. Pawley JB (2006) Handbook of biological confocal microscopy. Springer, New York, NY

    CrossRef  Google Scholar 

  7. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1368–1376

    CrossRef  CAS  Google Scholar 

  8. Hell SW (2015) Nanoscopy with focused light (nobel lecture). Angew Chem Int Edit 54(28):8054–8066

    CrossRef  CAS  Google Scholar 

  9. Betzig E (2015) Single molecules, cells, and super-resolution optics (nobel lecture). Angew Chem Int Edit 54(28):8034–8053

    CrossRef  CAS  Google Scholar 

  10. Moerner WE (2015) Nobel lecture: single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy. Rev Mod Phys 87(4):1183–1112

    CrossRef  CAS  Google Scholar 

  11. Yuan L, Lin WY, Zheng KB, He LW, Huang WM (2013) Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 42(2):622–661

    PubMed  CrossRef  CAS  Google Scholar 

  12. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115(21):11718–11740

    PubMed  CrossRef  CAS  Google Scholar 

  13. Yong KT, Law WC, Hu R, Ye L, Liu LW, Swihart MT, Prasad PN (2013) Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev 42(3):1236–1250

    PubMed  CrossRef  CAS  Google Scholar 

  14. Yin F, Gu B, Li JX, Panwar N, Liu Y, Li ZG, Yong KY, Tang BZ (2019) In vitro anticancer activity of aiegens. Biomater Sci 7(9):3855–3865

    PubMed  CrossRef  CAS  Google Scholar 

  15. Fercher AF, Drexler W, Hitzenberger CK, Lasser T (2003) Optical coherence tomography - principles and applications. Rep Prog Phys 66(2):239–233

    CrossRef  Google Scholar 

  16. Hoshi Y, Yamada Y (2016) Overview of diffuse optical tomography and its clinical applications. J Biomed Opt 21(9):091312

    PubMed  CrossRef  Google Scholar 

  17. Hoffman RM, Yang M (2006) Whole-body imaging with fluorescent proteins. Nat Protoc 1(3):1429–1438

    PubMed  CrossRef  CAS  Google Scholar 

  18. Vollmer M, Möllmann K-P (2017) Infrared thermal imaging: fundamentals, research and applications. John Wiley & Sons, New York, NY

    CrossRef  Google Scholar 

  19. Wang LHV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  20. Gu B, Yong KT, Liu B (2018) Strategies to overcome the limitations of aiegens in biomedical applications. Small Methods 2(9):1700392

    CrossRef  CAS  Google Scholar 

  21. Bastiaens PIH, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9(2):48–52

    PubMed  CrossRef  CAS  Google Scholar 

  22. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    PubMed  CrossRef  CAS  Google Scholar 

  23. Gu B, Wu WB, Xu GX, Feng GX, Yin F, Chong PHJ, Qu JL, Yong KT, Liu B (2017) Precise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristics. Adv Mater 29(28):1701076

    CrossRef  CAS  Google Scholar 

  24. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (fret) microscopy imaging of live cell protein localizations. J Cell Biol 160(5):629–633

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  25. Luan F, Gu B, Gomes ASL, Yong KT, Wen SC, Prasad PN (2015) Lasing in nanocomposite random media. Nano Today 10(2):168–192

    CrossRef  CAS  Google Scholar 

  26. Shen YC, Qian F, Lu ZH (2001) Real-time detection of pulsed laser energy by photoacoustic technique and its application in hyper-rayleigh scattering studies. Prog Nat Sci 11:S233–SS36

    Google Scholar 

  27. Saidi IS, Jacques SL, Tittel FK (1995) Mie and rayleigh modeling of visible-light scattering in neonatal skin. Appl Opt 34(31):7410–7418

    PubMed  CrossRef  CAS  Google Scholar 

  28. Saar BG, Freudiger CW, Reichman J, Stanley CM, Holtom GR, Xie XS (2010) Video-rate molecular imaging in vivo with stimulated raman scattering. Science 330(6009):1368–1370

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  29. Kuzmin AN, Pliss A, Lim CK, Heo J, Kim S, Rzhevskii A, Gu B, Yong KT, Wen SC, Prasad PN (2016) Resonance raman probes for organelle-specific labeling in live cells. Sci Rep 6(1):1–9

    CrossRef  CAS  Google Scholar 

  30. Campion A, Kambhampati P (1998) Surface-enhanced raman scattering. Chem Soc Rev 27(4):241–250

    CrossRef  CAS  Google Scholar 

  31. Yuan YF, Lin YN, Gu B, Panwar N, Tjin SC, Song J, Qu JL, Yong KT (2017) Optical trapping-assisted sers platform for chemical and biosensing applications: design perspectives. Coord Chem Rev 339:138–152

    CrossRef  CAS  Google Scholar 

  32. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9(1):123–128

    PubMed  CrossRef  CAS  Google Scholar 

  33. Gu B, Zhao CJ, Baev A, Yong KT, Wen SC, Prasad PN (2016) Molecular nonlinear optics: recent advances and applications. Adv Opt Photon 8(2):328–369

    CrossRef  Google Scholar 

  34. Faber DJ, Aalders MCG, Mik EG, Hooper BA, van Gemert MJC, van Leeuwen TG (2004) Oxygen saturation-dependent absorption and scattering of blood. Phys Rev Lett 93(2):028102

    PubMed  CrossRef  CAS  Google Scholar 

  35. Barolet D, Boucher A (2010) Radiant near infrared light emitting diode exposure as skin preparation to enhance photodynamic therapy inflammatory type acne treatment outcome. Lasers Surg Med 42(2):171–178

    PubMed  CrossRef  Google Scholar 

  36. Murphy DB (2001) Fundamentals of light microscopy and electronic imaging. Wiley-Liss, New York, NY

    Google Scholar 

  37. Born M, Wolf E (2013) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, Amsterdam

    Google Scholar 

  38. Hong GS, Antaris AL, Dai HJ (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1(1):1–22

    CrossRef  CAS  Google Scholar 

  39. Yuste R (2005) Fluorescence microscopy today. Nat Methods 2(12):902–904

    PubMed  CrossRef  CAS  Google Scholar 

  40. Marvin M (1961) Google patents

    Google Scholar 

  41. Pawley J (2006) Handbook of biological confocal microscopy. Springer Science & Business Media, New York, NY

    CrossRef  Google Scholar 

  42. Brakenhoff GJ (1979) Imaging modes in confocal scanning light microscopy (CSLM). J Microsc 117(2):233–242

    CrossRef  Google Scholar 

  43. Wilson T, Gannaway J, Johnson P (1980) A scanning optical microscope for the inspection of semiconductor materials and devices. J Microsc 118(3):309–314

    CrossRef  CAS  Google Scholar 

  44. Gu M (1996) Principles of three dimensional imaging in confocal microscopes. World Scientific, Singapore

    CrossRef  Google Scholar 

  45. He GS, Tan LS, Zheng Q, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108(4):1245–1230

    PubMed  CrossRef  CAS  Google Scholar 

  46. Chen GY, Qju HL, Prasad PN, Chen XY (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114(10):5161–5114

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  47. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940

    PubMed  CrossRef  CAS  Google Scholar 

  48. Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, Xu C (2013) In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7(3):205–209

    PubMed Central  CrossRef  CAS  Google Scholar 

  49. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    PubMed  CrossRef  CAS  Google Scholar 

  50. Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm). Nat Methods 3(10):793–795

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  51. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  52. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  53. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956

    PubMed  CrossRef  CAS  Google Scholar 

  54. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21(11):1347–1355

    PubMed  CrossRef  CAS  Google Scholar 

  55. Huang B, Bates M, Zhuang XW (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  56. Tearney GJ, Brezinski ME, Bouma BE, Boppart SA, Pitris C, Southern JF, Fujimoto JG (1997) In vivo endoscopic optical. Biopsy with optical coherence tomography. Science 276(5321):2037–2039

    PubMed  CrossRef  CAS  Google Scholar 

  57. Drexler W, Morgner U, Ghanta RK, Kartner FX, Schuman JS, Fujimoto JG (2001) Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 7(4):502–507

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  58. Arridge SR, Schweiger M, Hiraoka M, Delpy DT (1993) A finite element approach for modeling photon transport in tissue. Med Phys 20:299–309

    PubMed  CrossRef  CAS  Google Scholar 

  59. Koizumi H, Yamamoto T, Maki A, Yamashita Y, Sato H, Kawaguchi H, Ichikawa N (2003) Optical topography: practical problems and new applications. Appl Opt 42(16):3054–3062

    PubMed  CrossRef  Google Scholar 

  60. Campagnola PJ, Loew LM (2003) Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21(11):1356–1360

    PubMed  CrossRef  CAS  Google Scholar 

  61. Gu B, Pliss A, Kuzmin AN, Baev A, Ohulchanskyy TY, Damasco JA, Yong KT, Wen SC, Prasad PN (2016) In-situ second harmonic generation by cancer cell targeting zno nanocrystals to effect photodynamic action in subcellular space. Biomaterials 104:78–86

    PubMed  CrossRef  CAS  Google Scholar 

  62. Yelin D, Silberberg Y (1999) Laser scanning third-harmonic-generation microscopy in biology. Opt Express 5(8):169–175

    PubMed  CrossRef  CAS  Google Scholar 

  63. Cheng JX, Xie XS (2004) Coherent anti-stokes raman scattering microscopy: instrumentation, theory, and applications. J Phys Chem B 108(3):827–840

    CrossRef  CAS  Google Scholar 

  64. Zong WJ, Wu RL, Li ML, Hu YH, Li YJ, Li JH, Rong H, Wu HT, Xu YY, Lu Y et al (2017) Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods 14(7):713–719

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (61805135), Pujiang Talents Program (18PJ1405100), the National Key Research and Development Program of China (2019YFC1604604), and Shanghai Jiao Tong University (ZH2018QNA43).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobo Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lin, L. et al. (2021). Fundamentals of Optical Imaging. In: Wei, X., Gu, B. (eds) Optical Imaging in Human Disease and Biological Research. Advances in Experimental Medicine and Biology, vol 3233. Springer, Singapore. https://doi.org/10.1007/978-981-15-7627-0_1

Download citation