Skip to main content

Conversion of Formic Acid in Organic Synthesis as a C1 Source

  • Chapter
  • First Online:
Studies on Green Synthetic Reactions Based on Formic Acid from Biomass

Part of the book series: Springer Theses ((Springer Theses))

  • 336 Accesses

Abstract

The conversion of formic acid as a C1 source in organic synthesis is reviewed in this chapter, such as amine protecting group during peptide synthesis, methylated regent for amines, and CO surrogate in carbonylation reactions to deliever the corresponding aldehydes, ketones, or acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327:1110–1114

    CAS  PubMed  Google Scholar 

  2. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    CAS  PubMed  Google Scholar 

  3. Li CJ, Trost BM (2008) Green chemistry for chemical synthesis. Proc Natl Acad Sci USA 105:13197–13202

    CAS  PubMed  Google Scholar 

  4. Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451

    CAS  PubMed  Google Scholar 

  5. Taccardi N, Assenbaum D, Berger MEM, Bösmann A, Enzenberger F, Wölfel R, Neuendorf S, Goeke V, Schödel N, Maass HJ, Kistenmacher H, Wasserscheid P (2010) Catalytic production of hydrogen from glucose and other carbohydrates under exceptionally mild reaction conditions. Green Chem 12:1150–1156

    CAS  Google Scholar 

  6. Yu WY, Mullen GM, Flaherty DW, Mullins CB (2014) Selective hydrogen production from formic acid decomposition on Pd–Au bimetallic surfaces. J Am Chem Soc 136:11070–11078

    CAS  PubMed  Google Scholar 

  7. Broggi J, Jurcik V, Songis O, Poater A, Cavallo L, Slawin AMZ, Cazin CSJ (2013) The isolation of [Pd{OC(O)H}(H)(NHC)(PR3)] (NHC=N-heterocyclic carbene) and its role in alkene and alkyne reductions using formic acid. J Am Chem Soc 135:4588–4591

    CAS  PubMed  Google Scholar 

  8. (a) Boddien A, Mellmann D, Gärtner F, Jackstell R, Junge H, Dyson PJ, Laurenczy G, Ludwig R, Beller M (2011) Efficient dehydrogenation of formic acid using an iron catalyst. Science 333:733–1736. (b) Deng L, Li J, Lai DM, Fu Y, Guo QX (2009) Catalytic conversion of biomass–derived carbohydrates into γ‐valerolactone without using an external H2 supply. Angew Chem Int Ed 48:6529–6532. (c) Bielinski EA, Lagaditis PO, Zhang Y, Mercado BQ, Würtele C, Bernskoetter WH, Hazari N, Schneider S (2014) Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst. J Am Chem Soc 136:10234–10237

    Google Scholar 

  9. Supronowicz W, Ignatyev IA, Lolli G, Wolf A, Zhao L, Mleczko L (2015) Formic acid: a future bridge between the power and chemical industries. Green Chem 17:2904–2911

    CAS  Google Scholar 

  10. Fieser LF, Jones JE (1955) Organic syntheses, Collect vol III. Wiley, New York, p 590

    Google Scholar 

  11. Jung SH, Ahn JH, Park SK, Choi JK (2002) A practical and convenient procedure for the N-formylation of amines using formic acid. Bull Korean Chem Soc 23:149–150

    CAS  Google Scholar 

  12. Hosseini-Sarvari M, Sharghi HJ (2006) ZnO as a new catalyst for N-formylation of amines under solvent-free conditions. Org Chem 71:6652–6654

    CAS  Google Scholar 

  13. Bose AK (2006) Microwave promoted energy-efficient N-formylation with aqueous formic acid. Tetrahedron Lett 47:4605–4607

    CAS  Google Scholar 

  14. Dhake KP, Tambade PJ, Singhal RS, Bhanage BM (2011) An efficient, catalyst- and solvent-free N-formylation of aromatic and aliphatic amines. Green Chem Lett Rev 4:151–157

    CAS  Google Scholar 

  15. Aleiwi BA, Mitachi K, Kurosu M (2013) Mild and convenient N-formylation protocol in water-containing solvents. Tetrahedron Lett 54:2077–2081

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rappoport Z (2007) The chemistry of anilines. Wiley-Interscience, New York

    Google Scholar 

  17. Smith MB, March J (2001) Advanced organic chemistry, 5th edn. Wiley-Interscience, New York

    Google Scholar 

  18. Sorribes I, Junge K, Beller M (2014) General catalytic methylation of amines with formic acid under mild reaction conditions. Chem-Eur J 20:7878–7883

    CAS  PubMed  Google Scholar 

  19. Savourey S, Lefèvre G, Berthet JC, Cantat T (2014) Catalytic methylation of aromatic amines with formic acid as the unique carbon and hydrogen source. Chem Commun 50:14033–14036

    CAS  Google Scholar 

  20. Fu M-C, Shang R, Cheng W-M, Fu Y (2015) Boron-catalyzed N-alkylation of amines using carboxylic acids. Angew Chem Int Ed 54:9042–9046

    CAS  Google Scholar 

  21. Qiao C, Liu XF, Liu X, He LN (2017) Copper(II)-catalyzed selective reductive methylation of amines with formic acid: an option for indirect utilization of CO2. Org Lett 19:1490–1493

    CAS  PubMed  Google Scholar 

  22. Zhu L, Wang LS, Li B, Li W, Fu B (2016) Methylation of aromatic amines and imines using formic acid over a heterogeneous Pt/C catalyst. Catal Sci Technol 6:6172–6176

    CAS  Google Scholar 

  23. Wolfe JF, Ogliaruso MA, Patai S, Rappoport Z (1979) Synthesis of carboxylic acids, esters, and their derivatives. John Wiley & Sons, Ltd, 2010

    Google Scholar 

  24. Omae I (2011) Transition metal-catalyzed cyclocarbonylation in organic synthesis. Coord Chem Rev 255:139–160

    CAS  Google Scholar 

  25. Cacchi S, Fabrizi G, Goggiamani (2003) A palladium-catalyzed hydroxycarbonylation of aryl and vinyl halides or triflates by acetic anhydride and formate anions. Org Lett 5:4269–4272

    Google Scholar 

  26. Berger P, Bessmernykh A, Caille JC, Mignonac S (2006) Palladium-catalyzed hydroxycarbonylation of aryl and vinyl bromides by mixed acetic formic anhydride. Synthesis 3106–3110

    Google Scholar 

  27. Korsager S, Taaning RH, Skrydstrup T (2013) Effective palladium-catalyzed hydroxycarbonylation of aryl halides with substoichiometric carbon monoxide. J Am Chem Soc 135:2891–2894

    CAS  PubMed  Google Scholar 

  28. Qi X, Li CL, Wu XF (2016) A convenient palladium-catalyzed reductive carbonylation of aryl iodides with dual role of formic acid. Chem Eur J 22:5835–5838

    CAS  PubMed  Google Scholar 

  29. Qi X, Jiang LB, Li CL, Li R, Wu XF (2015) Palladium-catalyzed one-pot carbonylative sonogashira reaction employing formic acid as the CO source. Chem Asian J 10:1870–1873

    CAS  PubMed  Google Scholar 

  30. Qi X, Jiang LB, Li HP, Wu XF (2015) A convenient palladium-catalyzed carbonylative suzuki coupling of aryl halides with formic acid as the carbon monoxide source. Chem Eur J 21:17650–17656

    CAS  PubMed  Google Scholar 

  31. Jiang LB, Qi X, Wu XF (2016) Benzene-1,3,5-triyl triformate (TFBen): a convenient, efficient, and non-reacting CO source in carbonylation reactions. Tetrahedron Lett 57:3368–3370

    CAS  Google Scholar 

  32. Qi XX, Li R, Wu XF (2016) Selective palladium-catalyzed carbonylative synthesis of aurones with formic acid as the CO source. RSC Adv 6:62810–62813

    CAS  Google Scholar 

  33. Cao J, Zheng ZJ, Xu Z, Xu LW (2017) Transition-metal-catalyzed transfer carbonylation with HCOOH or HCHO as non-gaseous C1 source. Coordin Chem Rev 336:43–53

    CAS  Google Scholar 

  34. Kim DS, Park WJ, Lee CH, Jun CH (2014) Hydroesterification of alkenes with sodium formate and alcohols promoted by cooperative catalysis of Ru3(CO)12 and 2-pyridinemethanol. J Org Chem 79:12191–12196

    CAS  PubMed  Google Scholar 

  35. Wang H, Dong B, Wang Y, Li JF, Shi YA (2014) Palladium-catalyzed regioselective hydroesterification of alkenylphenols to lactones with phenyl formate as CO source. Org Lett 16:186–189

    CAS  PubMed  Google Scholar 

  36. Chang WJ, Dai J, Li JF, Shi Y, Ren WL, Shi YA (2017) A facile approach to ketones via Pd-catalyzed sequential carbonylation of olefins with formic acid. Org Chem Front 4:1074–1078

    CAS  Google Scholar 

  37. Simonato JP, Walter T, Mtivier PJ (2001) Iridium–formic acid based system for hydroxycarbonylation without CO gas. Mol Catal A 171:91–94

    CAS  Google Scholar 

  38. Simonato JP (2003) New efficient catalytic system for hydroxycarbonylation without CO gas. J Mol Catal A 197:61–64

    CAS  Google Scholar 

  39. Wang Y, Ren W, Li J, Wang H, Shi Y (2014) Facile palladium-catalyzed hydrocarboxylation of olefins without external CO gas. Org Lett 16:5960–5963

    CAS  PubMed  Google Scholar 

  40. Dai J, Ren W, Wang H, Shi Y (2015) A facile approach to β-amino acid derivatives via palladium-catalyzed hydrocarboxylation of enimides with formic acid. Org Biomol Chem 13:8429–8432

    CAS  PubMed  Google Scholar 

  41. Wang Y, Ren WL, Shi Y (2015) An atom-economic approach to carboxylic acids via Pd-catalyzed direct addition of formic acid to olefins with acetic anhydride as a co-catalyst. Org Biomol Chem 13:8416–8419

    CAS  PubMed  Google Scholar 

  42. Liu W, Ren WL, Li J, Shi Y, Chang WJ, Shi Y (2017) A ligand-directed catalytic regioselective hydrocarboxylation of aryl olefins with Pd and formic acid. Org Lett 19:1748–1751

    CAS  PubMed  Google Scholar 

  43. Wang X, Buchwald SL (2011) Rh-catalyzed asymmetric hydroformylation of functionalized 1,1-disubstituted olefins. J Am Chem Soc 133:19080–19083

    CAS  PubMed  Google Scholar 

  44. Ren W, Chang W, Dai J, Shi Y, Li J, Shi Y (2016) An effective Pd-catalyzed regioselective hydroformylation of olefins with formic acid. J Am Chem Soc 138:14864–14867

    CAS  PubMed  Google Scholar 

  45. Zargarian D, Alper H (1993) Palladium-catalyzed hydrocarboxylation of alkynes with formic acid. Organometallics 12:712–724

    CAS  Google Scholar 

  46. Hou J, Xie JH, Zhou QL (2015) Palladium-catalyzed hydrocarboxylation of alkynes with formic acid. Angew Chem Int Ed 54:6302–6305

    CAS  Google Scholar 

  47. Fu M-C, Shang R, Cheng W-M, Fu Y (2016) Nickel-catalyzed regio- and stereoselective hydrocarboxylation of alkynes with formic acid through catalytic CO recycling. ACS Catal 6:2501–2505

    CAS  Google Scholar 

  48. Hou J, Yuan ML, Xie JH, Zhou QL (2016) Nickel-catalyzed hydrocarboxylation of alkynes with formic acid. Green Chem 18:2981–2984

    CAS  Google Scholar 

  49. Li HP, Ai HJ, Qi XX, Peng JB, Wu XF (2017) Palladium-catalyzed carbonylative synthesis of benzofuran-2(3H)-ones from 2-hydroxybenzyl alcohols using formic acid as the CO source. Org Biomol Chem 15:1343–1345

    CAS  PubMed  Google Scholar 

  50. Qi XX, Li HP, Wu XF (2016) A convenient palladium-catalyzed carbonylative synthesis of benzofuran-2(3H)-ones with formic acid as the CO source. Chem Asian J 11:2453–2457

    CAS  PubMed  Google Scholar 

  51. Li HQ, Neumann H, Beller M (2016) Palladium-catalyzed aminocarbonylation of allylic alcohols. Chem Eur J 22:10050–10056

    CAS  PubMed  Google Scholar 

  52. Fu M-C, Shang R, Cheng W-M, Fu Y (2017) Efficient Pd-catalyzed regio- and stereoselective carboxylation of allylic alcohols with formic acid. Chem Eur J 23:8818–8822

    CAS  PubMed  Google Scholar 

  53. Wu FP, Peng JB, Fu LY, Qi XX, Wu XF (2017) Direct palladium-catalyzed carbonylative transformation of allylic alcohols and related derivatives. Org Lett 19:5474–5477

    CAS  PubMed  Google Scholar 

  54. Li X, Li X, Jiao N (2015) Rh-catalyzed construction of quinolin-2(1H)-ones via C-H bond activation of simple anilines with CO and alkynes. J Am Chem Soc 137:9246–9249

    CAS  PubMed  Google Scholar 

  55. Shibahara F, Kinoshita S, Nozaki K (2004) Palladium(II)-catalyzed sequential hydroxylation-carboxylation of biphenyl using formic acid as a carbonyl source. Org Lett 6:2437–2439

    CAS  PubMed  Google Scholar 

  56. Sakakibara K, Yamashita M, Nozaki K (2005) An efficient Pd(II)-based catalyst system for carboxylation of aromatic C-H bond by addition of a phosphenium salt. Tetrahedron Lett 46:959–962

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chen Fu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, MC. (2020). Conversion of Formic Acid in Organic Synthesis as a C1 Source. In: Studies on Green Synthetic Reactions Based on Formic Acid from Biomass. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-7623-2_1

Download citation

Publish with us

Policies and ethics