Skip to main content

Electrical Biosensor Using Graphene Field-Effect Transistor and Small Receptor Molecules

  • Chapter
  • First Online:
Carbon Related Materials

Abstract

Graphene is a two-dimensional nanocarbon material that exhibits unique physical properties. Graphene field-effect transistor (FET) has a strong potential for an electrical biosensor, because graphene FET transduces direct contact of the target on two-dimensional electron gas to large drain current change owing to graphene’s high carrier mobility. To achieve selective detection of the target, graphene surface needs to be immobilized with target-specific receptor molecules, and the receptor molecules must be smaller than the thickness of electrical double layer in sample solution to avoid Debye screening. In this article, we reviewed our recent achievements in biosensing applications of graphene FET immobilized with small receptor molecules such as aptamer, sialoglycan and others. The graphene FET biosensor, named “lab-on-a-graphene-FET,” showed high sensitivity at sub-nanomolar concentration of the target, immunoglobulin E, pseudo-influenza virus lectin, and others. With appropriate control of graphene surface, lab-on-a-graphene-FET provides attractive method for electrical biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K.S. Novoselov et al., Science 306, 666 (2004)

    CAS  Google Scholar 

  2. K.S. Novoselov et al., Nature 490, 192 (2012)

    Article  CAS  Google Scholar 

  3. A.C. Ferrari et al., Nanoscale 7, 4598 (2015)

    Article  CAS  Google Scholar 

  4. Y. Ohno et al., Nano Lett. 9, 3318 (2009)

    Article  CAS  Google Scholar 

  5. Y. Ohno et al., J. Am. Chem. Soc. 132, 18012 (2010)

    Article  CAS  Google Scholar 

  6. Y. Ohno et al., Jpn. J. Appl. Phys. 50, 070120 (2011)

    Article  Google Scholar 

  7. K. Matsumoto et al., J. Phys. D 47, 094005 (2014)

    Article  Google Scholar 

  8. M. Zhou et al., Anal. Chem. 81, 5603 (2009)

    Article  CAS  Google Scholar 

  9. E.H. Hwang et al., Phys. Rev. Lett. 98, 186806 (2007)

    Article  CAS  Google Scholar 

  10. K.I. Bolotin et al., Solid State Commun. 146, 351 (2008)

    Article  CAS  Google Scholar 

  11. T. Ono et al., Jpn. J. Appl. Phys. 56, 030302 (2017)

    Article  Google Scholar 

  12. P.K. Ang et al., J. Am. Chem. Soc. 130, 14392 (2008)

    Article  CAS  Google Scholar 

  13. B. M. Giacchetti et al. J. Appl. Phys. 114, 084505 (2013)

    Google Scholar 

  14. X. Tan et al., J. Phys. Chem. C 117, 27155 (2013)

    Article  CAS  Google Scholar 

  15. T. Ono et al., Nano Lett. 19, 4004 (2019)

    Article  CAS  Google Scholar 

  16. N. Nakatsuka et al., Science 362, 319 (2018)

    Article  CAS  Google Scholar 

  17. L.J. Harris et al., J. Mol. Biol. 275, 861 (1998)

    Article  CAS  Google Scholar 

  18. J.A. Belser et al., Science 359, 255 (2018)

    Article  CAS  Google Scholar 

  19. S. Okamoto et al., Jpn. J. Appl. Phys. 51, 06FD08 (2012)

    Google Scholar 

  20. Y. Ohno et al., Jpn. J. Appl. Phys. 52, 110107 (2013)

    Article  Google Scholar 

  21. T. Kawata et al., Jpn. J. Appl. Phys. 57, 065103 (2018)

    Article  Google Scholar 

  22. M. Nakamura et al., Jpn. J. Appl. Phys. 54, 06FF11 (2015)

    Google Scholar 

Download references

Acknowledgements

This study was partially supported by JST CREST (JPMJCR15F4) from Japan Science and Technology agency. This study was also supported by JSPS KAKENHI (16K13638 and 18K14107) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takao Ono or Kazuhiko Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ono, T., Kanai, Y., Ohno, Y., Maehashi, K., Inoue, K., Matsumoto, K. (2021). Electrical Biosensor Using Graphene Field-Effect Transistor and Small Receptor Molecules. In: Kaneko, S., et al. Carbon Related Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7610-2_5

Download citation

Publish with us

Policies and ethics