Skip to main content

Environmental Impacts and Safety Concerns of Carbon Nanomaterials

  • Chapter
  • First Online:
Carbon Related Materials
  • 509 Accesses

Abstract

In the last couple of decades, carbon nanomaterials have been a hot topic in research, and while they start appearing in commercial products, their environmental impacts are still far from being understood. The life-cycle assessment (LCA) is one way of assessing the environmental burdens of a product throughout its lifecycle on the environment and human beings. This chapter starts with an introduction to the LCA technique, from its origins to the ideas behind its holistic approach that, by investigating the whole lifecycle, avoids shifting the environmental burden from one life stage to the others (e.g. from production to disposal). The chapter then focuses then on a review of the published LCA studies on carbon nanomaterials evaluating commonalities among studies and limitations. Findings suggest that carbon nanomaterials production is more energy demanding than their traditional counterparts, but they can have a lower environmental profile when their whole lifecycle is considered. The last part focuses on the limitations of the LCA in relation to nanomaterials, and the difficulties in understanding their toxicological impacts when released to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Background system comprises processes that are part of the system but not under direct control of the producers (e.g. electricity or raw material production).

  2. 2.

    Foreground system is defined in the LCA theory as “the processes which are under the control of the decision-maker for which an LCA is carried out”, i.e., the process in place to manufacture/perform the product/service. Together with the Background system (see footnote 1) forms the whole investigated system.

References

  1. U. Colombo, The Club of Rome and sustainable development. Futures 33(1), 7–11 (2001)

    Article  Google Scholar 

  2. R.G. Hunt, J.D. Sellers, W.E. Franklin, Resource and environmental profile analysis: A life cycle environmental assessment for products and procedures. Environ. Impact Assess. Rev. 12(3), 245–269 (1992)

    Article  Google Scholar 

  3. G.H. Brundtland.: Our common future: report of the World Commission on Environment and Development. Geneva, UN-Dokument A/42/427 (1987). http://www.un-documents.net/ocf-ov.htm

  4. K. Bartels, K.A. Parker, Teaching Sustainability/Teaching Sustainably (Stylus Publishing, Sterling, 2011)

    Google Scholar 

  5. J. Fava et al., SETAC Workshop Report: A Technical Framework for Life Cycle Assessments, 18–23 Aug 1990, Smugglers Notch, Vermont. SETAC, Washington, DC Google Scholar (1991)

    Google Scholar 

  6. ISO, Environmental Management—Life Cycle Assessment—Principles and Framework. EN ISO 14040:2006, European Standard (2006)

    Google Scholar 

  7. ISO, Environmental Management—Life Cycle Assessment—Principles and framework. EN ISO 14044:2006, European Standard (2006)

    Google Scholar 

  8. A. Camyab et al., Early action on climate change. Power Eng. 20(6), 20–23 (2006)

    Article  Google Scholar 

  9. D. Lewis, Our time is running out. Power Eng. 20(6), 15–19 (2006)

    Google Scholar 

  10. JRC, ILCD Handbook (Institute for Environment and Sustainability, European Commission Joint Research Centre, 2010)

    Google Scholar 

  11. J.F. Randall, Designing Indoor Solar Products—Photovoltaic Technologies for AES (Wiley, New York, 2006)

    Google Scholar 

  12. B.G. Hermann, C. Kroeze, W. Jawjit, Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators. J. Clean. Prod. 15(18), 1787–1796 (2007)

    Article  Google Scholar 

  13. Waldron, K., Handbook of Waste Management and Co-Product Recovery in Food Processing, vol. 2 (Woodhead Publishing, 2009)

    Google Scholar 

  14. L.H. Goldberg, W. Middleton, Green Electronics/Green Bottom Line—Environmentally Responsible Engineering (Elsevier, Amsterdam, 1999)

    Google Scholar 

  15. R.M. Atlas, J. Philp, Bioremediation—Applied Microbial Solutions for Real-World Environmental Cleanup. American Society for Microbiology (ASM)

    Google Scholar 

  16. G. Finnveden et al., Recent developments in life cycle assessment. J. Environ. Manage. 91(1), 1–21 (2009)

    Article  Google Scholar 

  17. J. Reap et al., A survey of unresolved problems in life cycle assessment. Int. J. Life Cycle Assess. 13(5), 374 (2008)

    Article  Google Scholar 

  18. H.A.U. de Haes, Applications of life cycle assessment: expectations, drawbacks and perspectives. J. Clean. Prod. 1(3–4), 131–137 (1993)

    Google Scholar 

  19. J.R. Ehrenfeld, The importance of LCAs—Warts and all. J. Ind. Ecol. 1(2), 41–49 (1997)

    Article  Google Scholar 

  20. J. Krozer, J.C. Vis, How to get LCA in the right direction? J. Clean. Prod. 6(1), 53–61 (1998)

    Article  Google Scholar 

  21. G. Finnveden, On the limitations of life cycle assessment and environmental systems analysis tools in general. Int. J. Life Cycle Assess. 5(4), 229–238 (2000)

    Article  Google Scholar 

  22. G. Sinden, The contribution of PAS 2050 to the evolution of international greenhouse gas emission standards. Int. J. Life Cycle Assess. 14(3), 195–203 (2009)

    Article  CAS  Google Scholar 

  23. J. Guinee, Handbook on life cycle assessment operational guide to the ISO standards. Int. J. Life Cycle Assess. 7(5), 311–313 (2002)

    Article  Google Scholar 

  24. N.D. Mermin, Crystalline order in two dimensions. Phys. Rev. 176(1), 250–254 (1968)

    Article  Google Scholar 

  25. K.S. Novoselov et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Article  CAS  Google Scholar 

  26. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  27. A.K. Geim, Graphene: status and prospects. Science 324(5934), 1530–1534 (2009)

    Article  CAS  Google Scholar 

  28. D.A.C. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications. J. Power Sour. 196(11), 4873–4885 (2011)

    Article  CAS  Google Scholar 

  29. Y. Shao et al., Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J. Power Sour. 195(15), 4600–4605 (2010)

    Article  CAS  Google Scholar 

  30. M. Terrones et al., Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 5(4), 351–372 (2010)

    Article  CAS  Google Scholar 

  31. Y. Takabayashi et al., The Disorder-Free Non-BCS Superconductor Cs3C60 Emerges from an Antiferromagnetic Insulator Parent State. Science 323(5921), 1585–1590 (2009)

    Article  CAS  Google Scholar 

  32. R.J. Young et al., The mechanics of graphene nanocomposites: A review. Compos. Sci. Technol. 72(12), 1459–1476 (2012)

    Article  CAS  Google Scholar 

  33. H. Xia et al., Mechanical and thermal properties of reduced graphene oxide reinforced aluminum nitride ceramic composites. Mater. Sci. Eng., A 639, 29–36 (2015)

    Article  CAS  Google Scholar 

  34. J.R. Potts et al., Graphene-based polymer nanocomposites. Polymer 52(1), 5–25 (2011)

    Article  CAS  Google Scholar 

  35. D. Sidorenko et al., Carbon nanotube reinforced metal binder for diamond cutting tools. Mater. Des. 83, 536–544 (2015)

    Article  CAS  Google Scholar 

  36. C.-M. Gee et al., Flexible transparent electrodes made of electrochemically exfoliated graphene sheets from low-cost graphite pieces. Displays 34(4), 315–319 (2013)

    Article  CAS  Google Scholar 

  37. H.M. Hegab, L. Zou, Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J. Membr. Sci. 484, 95–106 (2015)

    Article  CAS  Google Scholar 

  38. Y. Wang et al., A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation. J. Mater. Chem. A 6(3), 963–971 (2018)

    Article  CAS  Google Scholar 

  39. P. Li et al., Investigation of the semiconductor/electrode interface in organic thin-film transistor using graphene electrodes. Synth. Met. 202, 103–109 (2015)

    Article  CAS  Google Scholar 

  40. C.M. Homenick et al., Fully printed and encapsulated SWCNT-based thin film transistors via a combination of R2R gravure and inkjet printing. ACS Appl. Mater. Interfaces 8(41), 27900–27910 (2016)

    Article  CAS  Google Scholar 

  41. Z. Li et al., Decomposable s-Tetrazine copolymer enables single-walled carbon nanotube thin film transistors and sensors with improved sensitivity. Adv. Func. Mater. 28(13), 1705568 (2018)

    Article  CAS  Google Scholar 

  42. G.S. Selopal et al., Graphene as transparent front contact for dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 135, 99–105 (2015)

    Article  CAS  Google Scholar 

  43. B.C. Thompson, J.M.J. Fréchet, Polymer-fullerene composite solar cells. Angew. Chem. Int. Ed. 47(1), 58–77 (2008)

    Article  CAS  Google Scholar 

  44. T.A. Shastry et al., Enhanced uniformity and area scaling in carbon nanotube-fullerene bulk-heterojunction solar cells enabled by solvent additives. Adv. Energy Mater. 6(2), 1501466 (2016)

    Article  CAS  Google Scholar 

  45. X. Yu, A. Manthiram, Na2S–carbon nanotube fabric electrodes for room-temperature sodium–sulfur batteries. Chem. A Eur. J. 2015 21(11), 4233–4237

    Google Scholar 

  46. Y. Xie et al., Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2(24), 9142–9149 (2014)

    Article  CAS  Google Scholar 

  47. D. Xie et al., Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage. J. Power Sour. 296, 392–399 (2015)

    Article  CAS  Google Scholar 

  48. S. Gavankar, S. Suh, A.F. Keller, Life cycle assessment at nanoscale: review and recommendations. Int. J. Life Cycle Assess. 17(3), 295–303 (2012)

    Article  Google Scholar 

  49. M. Miseljic, S.I. Olsen, Life-cycle assessment of engineered nanomaterials: a literature review of assessment status. J. Nanopart. Res. 16(6), 2427 (2014)

    Article  CAS  Google Scholar 

  50. O. Jolliet, R.K. Rosenbaum, A. Laurent, Life cycle risks and impacts of nanotechnologies. Nanotechnol. Hum. Health 2013, 213–277

    Google Scholar 

  51. R. Hischier, T. Walser, Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci. Total Environ. 425, 271–282 (2012)

    Article  CAS  Google Scholar 

  52. V.K.K. Upadhyayula et al., Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J. Clean. Prod. 26, 37–47 (2012)

    Article  CAS  Google Scholar 

  53. B. Salieri et al., Life cycle assessment of manufactured nanomaterials: where are we? NanoImpact 10, 108–120 (2018)

    Article  Google Scholar 

  54. N.M. Mubarak et al., An overview on methods for the production of carbon nanotubes. J. Ind. Eng. Chem. 20(4), 1186–1197 (2014)

    Article  CAS  Google Scholar 

  55. M. Cossutta, J. McKechnie, S.J. Pickering, A comparative LCA of different graphene production routes. Green Chem. 19(24), 5874–5884 (2017)

    Article  CAS  Google Scholar 

  56. V. Khanna, B.R. Bakshi, Carbon nanofiber polymer composites: evaluation of life cycle energy use. Environ. Sci. Technol. 43(6), 2078–2084 (2009)

    Article  CAS  Google Scholar 

  57. A. Pizza et al., Life cycle assessment of nanocomposites made of thermally conductive graphite nanoplatelets. Int. J. Life Cycle Assess. 19(6), 1226–1237 (2014)

    Article  CAS  Google Scholar 

  58. D.A. Notter et al., Life cycle assessment of PEM FC applications: electric mobility and μ-CHP. Energy Environ. Sci. 8(7), 1969–1985 (2015)

    Article  CAS  Google Scholar 

  59. R. Arvidsson et al., Energy and resource use assessment of graphene as a substitute for indium tin oxide in transparent electrodes. J. Clean. Product. 132, 289–297 (2016)

    Article  CAS  Google Scholar 

  60. P. Zhai, J.A. Isaacs, M.J. Eckelman, Net energy benefits of carbon nanotube applications. Appl. Energy 173, 624–634 (2016)

    Article  CAS  Google Scholar 

  61. W.-J. Long et al., Performance enhancement and environmental impact of cement composites containing graphene oxide with recycled fine aggregates. J. Clean. Prod. 194, 193–202 (2018)

    Article  CAS  Google Scholar 

  62. G. Chilkoor et al., Sustainability of renewable fuel infrastructure: a screening LCA case study of anticorrosive graphene oxide epoxy liners in steel tanks for the storage of biodiesel and its blends. Environ. Sci. Process. Impacts 19(2), 141–153 (2017)

    Article  CAS  Google Scholar 

  63. V.K.K. Upadhyayula et al., Screening-level life cycle assessment of graphene-poly(ether imide) coatings protecting unalloyed steel from severe atmospheric corrosion. ACS Sustain. Chem. Eng. 5(3), 2656–2667 (2017)

    Article  CAS  Google Scholar 

  64. L. Pourzahedi et al., Life cycle energy benefits of carbon nanotubes for electromagnetic interference (EMI) shielding applications. J. Clean. Prod. 142, 1971–1978 (2017)

    Article  CAS  Google Scholar 

  65. C. Bauer et al., Towards a framework for life cycle thinking in the assessment of nanotechnology. J. Clean. Prod.s 16(8), 910–926 (2008)

    Article  Google Scholar 

  66. A.L. Holder et al., Nanomaterial disposal by incineration. Environ. Sci. Process. Impacts 15(9), 1652–1664 (2013)

    Article  CAS  Google Scholar 

  67. E.P. Vejerano, A.L. Holder, L.C. Marr, Emissions of polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins, and dibenzofurans from incineration of nanomaterials. Environ. Sci. Technol. 47(9), 4866–4874 (2013)

    Article  CAS  Google Scholar 

  68. M. Cossutta et al., A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. J. Clean. Prod. 242, 118468 (2020)

    Article  CAS  Google Scholar 

  69. S. Gavankar, S. Suh, A.A. Keller, The role of scale and technology maturity in life cycle assessment of emerging technologies: a case study on carbon nanotubes. J. Ind. Ecol. 19(1), 51–60 (2015)

    Article  CAS  Google Scholar 

  70. R. Arvidsson et al., Prospective life cycle assessment of graphene production by ultrasonication and chemical reduction. Environ. Sci. Technol. 48(8), 4529–4536 (2014)

    Article  CAS  Google Scholar 

  71. R. Arvidsson, S. Molander, Prospective life cycle assessment of epitaxial graphene production at different manufacturing scales and maturity. J. Ind. Ecol. 21(5), 1153–1164 (2017)

    Article  CAS  Google Scholar 

  72. T.G. Gutowski, J.Y.H. Liow, D.P. Sekulic, Minimum exergy requirements for the manufacturing of carbon nanotubes. In: 2010 IEEE International Symposium on Sustainable Systems and Technology (ISSST) (2010)

    Google Scholar 

  73. R. Arvidsson et al., Environmental assessment of emerging technologies: recommendations for prospective LCA. J. Ind. Ecol. 22(6), 1286–1294 (2018)

    Article  CAS  Google Scholar 

  74. R. Hischier, Life cycle assessment study of a field emission display television device. Int. J. Life Cycle Assess. 20(1), 61–73 (2015)

    Article  CAS  Google Scholar 

  75. O.G. Griffiths et al., Identifying the largest environmental life cycle impacts during carbon nanotube synthesis via chemical vapour deposition. J. Clean. Prod. 42, 180–189 (2013)

    Article  CAS  Google Scholar 

  76. I. Celik et al., Environmental impacts from photovoltaic solar cells made with single walled carbon nanotubes. Environ. Sci. Technol. 51(8), 4722–4732 (2017)

    Article  CAS  Google Scholar 

  77. M.L. Healy, L.J. Dahlben, J.A. Isaacs, Environmental assessment of single-walled carbon nanotube processes. J. Ind. Ecol. 12(3), 376–393 (2008)

    Article  CAS  Google Scholar 

  78. P. Khalid et al., Toxicology of carbon nanotubes-a review. Int. J. Appl. Eng. Res. 11(1), 148–157 (2016)

    Google Scholar 

  79. G. Lalwani et al., Toxicology of graphene-based nanomaterials. Adv. Drug Deliv. Rev. 105, 109–144 (2016)

    Article  CAS  Google Scholar 

  80. G. Oberdörster, V. Stone, K. Donaldson, Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1), 2–25 (2007)

    Article  CAS  Google Scholar 

  81. F. Gottschalk, B. Nowack, The release of engineered nanomaterials to the environment. J. Environ. Monit. 13(5), 1145–1155 (2011)

    Article  CAS  Google Scholar 

  82. D.M. Mitrano, B. Nowack, The need for a life-cycle based aging paradigm for nanomaterials: importance of real-world test systems to identify realistic particle transformations. Nanotechnology 28(7), 072001 (2017)

    Article  CAS  Google Scholar 

  83. F.M. Christensen, S.I. Olsen, The potential role of life cycle assessment in regulation of chemicals in the European union. Int. J. Life Cycle Assess. 9(5), 327 (2004)

    Article  CAS  Google Scholar 

  84. K.D. Grieger et al., Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals? J. Nanopart. Res. 14(7), 958 (2012)

    Article  CAS  Google Scholar 

  85. D. Beloin-Saint-Pierre et al., How suitable is LCA for nanotechnology assessment? Overview of current methodological pitfalls and potential solutions: 65th LCA Discussion Forum, Swiss Federal Institute of Technology, Zürich, May 24, 2017. Int. J. Life Cycle Assess. 23(1), 191–196 (2018)

    Article  Google Scholar 

  86. H.F. Krug, Nanosafety research—are we on the right track? Angew. Chem. Int. Ed. 53(46), 12304–12319 (2014)

    CAS  Google Scholar 

  87. N.E. Landvik et al., Criteria for grouping of manufactured nanomaterials to facilitate hazard and risk assessment, a systematic review of expert opinions. Regul. Toxicol. Pharmacol. 95, 270–279 (2018)

    Article  CAS  Google Scholar 

  88. J. Stilgoe, R. Owen, P. Macnaghten, Developing a framework for responsible innovation. Res. Policy 42(9), 1568–1580 (2013)

    Article  Google Scholar 

  89. R. Owen, P. Macnaghten, J. Stilgoe, Responsible research and innovation: from science in society to science for society, with society. Sci. Publ. Policy 39(6), 751–760 (2012)

    Article  Google Scholar 

  90. Arvidsson, R., et al.: Just carbon: ideas about graphene risks by graphene researchers and innovation advisors. NanoEthics (2018)

    Google Scholar 

  91. D. Kushnir, B.A. Sandén, Energy requirements of carbon nanoparticle production. J. Ind. Ecol. 12(3), 360–375 (2008)

    Article  CAS  Google Scholar 

  92. V. Khanna, B.R. Bakshi, L.J. Lee, Carbon nanofiber production. J. Ind. Ecol. 12(3), 394–410 (2008)

    Article  CAS  Google Scholar 

  93. L.J. Dahlben et al., Environmental life cycle assessment of a carbon nanotube-enabled semiconductor device. Environ. Sci. Technol. 47(15), 8471–8478 (2013)

    Article  CAS  Google Scholar 

  94. P. Yaseneva et al., Efficient reduction of bromates using carbon nanofibre supported catalysts: Experimental and a comparative life cycle assessment study. Chem. Eng. J. 248, 230–241 (2014)

    Article  CAS  Google Scholar 

  95. A.-F. Trompeta et al., Towards a holistic environmental impact assessment of carbon nanotube growth through chemical vapour deposition. J. Clean. Prod. 129, 384–394 (2016)

    Article  CAS  Google Scholar 

  96. Khanam, P.N., et al.: Biotechnological production process and life cycle assessment of graphene. J. Nanomater. 2017 (2017)

    Google Scholar 

  97. T.-H. Lin, Y.-S. Chien, W.-M. Chiu, Rubber tire life cycle assessment and the effect of reducing carbon footprint by replacing carbon black with graphene. Int. J. Green Energy 14(1), 97–104 (2017)

    Article  CAS  Google Scholar 

  98. S. Guarino et al., Life cycle assessment of a new graphene-based electrodeposition process on copper components. J. Clean. Prod. 165, 520–529 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Cossutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cossutta, M., McKechnie, J. (2021). Environmental Impacts and Safety Concerns of Carbon Nanomaterials. In: Kaneko, S., et al. Carbon Related Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-7610-2_11

Download citation

Publish with us

Policies and ethics