Abstract
Language-specific and context-dependent phonological rules of lexical tone are prevalent in tone languages. Such rules are commonly referred to as tone sandhi. One of the most studied sandhi rules is Mandarin Tone 3 sandhi. In Mandarin, Tone 3 followed by another Tone 3 is pronounced as Tone 2 (33 → 23). In this chapter, we reviewed our current understanding of the processing of Tone 3 sandhi. Two important and relatively well-investigated questions are whether Tone 3 sandhi involves on-line tone substitution in speech production and whether the auditory representations of Tone 2 and Tone 3 are less distinct from each other due to the acquisition of Tone 3 sandhi. Recent behavioral studies demonstrated that in the lexical decision task, only Tone 3 had a facilitation effect on targets carrying tone sequence 33, while in the picture-naming task, a facilitation effect was found with both Tone 2 and Tone 3. These results supported that Tone 3 sandhi involves on-line tone substitution, in line with fMRI studies showing that Tone 3 sandhi resulted in higher activation in the right pIFG, which is known to engage in articulatory representations and their sequencing. Regarding tone perception, previous behavioral studies showed that the acquisition of Tone 3 sandhi led to worse performance at discriminating Tone 2 and Tone 3. Further, the contrast between Tone 2 and Tone 3 is consistently reported to elicit reduced MMN compared to other tone pairs only in native speakers. One explanation of these findings is that the auditory representations of Tone 2 and Tone 3 activated each other due to Tone 3 sandhi. Namely, high-level phonological rule could modulate pre-attentive auditory processing. In the future, the role of linguistic context in the processing of tone sandhi needs more investigation, especially regarding how listeners retrieve the correct word/morpheme based on the contextual information.
This is a preview of subscription content, access via your institution.
Buying options


Notes
- 1.
We use international phonetic symbol (IPA) to transcribe syllable throughout this chapter.
References
Albouy, P., Mattout, J., Bouet, R., Maby, E., Sanchez, G., Aguera, P. E., Tillmann, B. (2013). Impaired pitch perception and memory in congenital amusia: The deficit starts in the auditory cortex. Brain, 136(5), 1639–1661. https://doi.org/10.1093/brain/awt082.
Anderson, S. R. (1981). Why phonology isn’t “natural.” Linguistic Inquiry, 12(4), 493–539. Retrieved from https://escholarship.org/uc/item/7b6962b4#page-39.
Archangeli, D. (1988). Aspects of underspecification theory. Phonology, 5(02), 183–207. https://doi.org/10.1017/S0952675700002268
Blevins, J. (2006). A theoretical synopsis of evolutionary phonology. Theoretical Linguistics, 32(2), 117–166. https://doi.org/10.1515/TL.2006.009
Chandrasekaran, B., Gandour, J. T., & Krishnan, A. (2007). Neuroplasticity in the processing of pitch dimensions: A multidimensional scaling analysis of the mismatch negativity. Restorative Neurology and Neuroscience, 25(3–4), 195–210. https://doi.org/10.1016/j.ygyno.2014.12.035.Pharmacologic
Chandrasekaran, B., Krishnan, A., & Gandour, J. T. (2007). Mismatch negativity to pitch contours is influenced by language experience. Brain Research, 1128(1), 148–156. https://doi.org/10.1016/j.brainres.2006.10.064
Chang, C. Y. (2010). Dialect differences in the production and perception of Mandarin Chinese tones. The Ohio State University.
Chang, C. H. C., & Kuo, W. J. (2016). The neural substrates underlying the implementation of phonological rule in lexical tone production: An fMRI study of the tone 3 sandhi phenomenon in Mandarin Chinese. PLoS ONE. https://doi.org/10.1371/journal.pone.0159835
Chang, C. H. C., Lee, H. J., Tzeng, O. J. L., & Kuo, W.-J. (2014). Implicit target substitution and sequencing for lexical tone production in Chinese: An fMRI study. PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0083126.
Chang, C. H. C., Lin, T. H., & Kuo, W. J. (2019). Does phonological rule of tone substitution modulate mismatch negativity? Journal of Neurolinguistics, 51, 63–75. https://doi.org/10.1016/j.jneuroling.2019.01.001
Chao, Y. R. (1948). Mandarin primer. Cambridge (UK): Harvard University Press. https://doi.org/10.4159/harvard.9780674732889.
Chen, A., Liu, L., & Kager, R. (2015). Cross-linguistic perception of Mandarin tone sandhi. Language Sciences, 48, 62–69. https://doi.org/10.1016/j.langsci.2014.12.002
Chen, A., Liu, L., & Kager, R. (2016). Cross-domain correlation in pitch perception, the influence of native language. Language, Cognition and Neuroscience, 31(6), 751–760. https://doi.org/10.1080/23273798.2016.1156715
Chen, M. Y. (2000). Tone sandhi: Patterns across Chinese dialects. Cambridge University Press.
Chen, N. F., Wee, D., Tong, R., Ma, B., & Li, H. (2016). Large-scale characterization of non-native Mandarin Chinese spoken by speakers of European origin: Analysis on iCALL. Speech Communication, 84, 46–56. https://doi.org/10.1016/j.specom.2016.07.005
Cheng, Y.-Y., Wu, H.-C., Tzeng, Y.-L., Yang, M.-T., Zhao, L.-L., & Lee, C.-Y. (2013). The development of mismatch responses to Mandarin lexical tones in early infancy. Developmental Neuropsychology, 38(5), 281–300. https://doi.org/10.1080/87565641.2013.799672
Chien, Y.-F., Sereno, J. A., & Zhang, J. (2016). Priming the representation of Mandarin tone 3 sandhi words. Language, Cognition and Neuroscience, 31(2), 179–189. https://doi.org/10.1080/23273798.2015.1064976
Chien, Y.-F., Sereno, J. A., & Zhang, J. (2017). What’s in a word: Observing the contribution of underlying and surface representations. Language and Speech, 60(4), 643–657. https://doi.org/10.1177/0023830917690419
Cornell, S. A., Lahiri, A., & Eulitz, C. (2011). “What you encode is not necessarily what you store”: Evidence for sparse feature representations from mismatch negativity. Brain Research, 1394, 79–89. https://doi.org/10.1016/J.BRAINRES.2011.04.001
D’Ausilio, A., Pulvermüller, F., Salmas, P., Bufalari, I., Begliomini, C., & Fadiga, L. (2009). The motor somatotopy of speech perception. Current Biology, 19(5), 381–385. https://doi.org/10.1016/j.cub.2009.01.017
Eulitz, C., & Lahiri, A. (2004). Neurobiological evidence for abstract phonological representations in the mental lexicon during speech recognition. Journal of Cognitive Neuroscience, 16, 577–583. https://doi.org/10.1162/089892904323057308
Flagmeier, S. G., Ray, K. L., Parkinson, A. L., Li, K., Vargas, R., Price, L. R., Robin, D. A. (2014). The neural changes in connectivity of the voice network during voice pitch perturbation. Brain and Language, 132, 7–13. https://doi.org/10.1016/j.bandl.2014.02.001.
Fu, C. H. Y., Vythelingum, G. N., Brammer, M. J., Williams, S. C. R., Amaro, E., Andrew, C. M., McGuire, P. K. (2006). An fMRI study of verbal self-monitoring: Neural correlates of auditory verbal feedback. Cerebral Cortex, 16(7), 969–977. https://doi.org/10.1093/cercor/bhj039.
Galantucci, B., Fowler, C. A., & Turvey, M. T. (2006). The motor theory of speech perception reviewed. Psychonomic Bulletin & Review, 13(3), 361–377. https://doi.org/10.3758/BF03193857
Gandour, J. T. (1983). Tone perception in far eastern-languages. Journal of Phonetics, 11(2), 149–175.
Gandour, J. T. (1984). Tone dissimilarity judgments by Chinese Listeners. Journal of Chinese Linguistics, 12(2), 235–261. Retrieved from https://www.jstor.org/stable/23767002.
Gandour, J. T., Dzemidzic, M., Wong, D., Lowe, M., Tong, Y., Hsieh, L., Lurito, J. (2003). Temporal integration of speech prosody is shaped by language experience: an fMRI study. Brain and Language, 84(3), 318–336. https://doi.org/10.1016/S0093-934X(02)00505-9.
Gandour, J. T., Wong, D., Hsieh, L., Weinzapfel, B., Lancker, D. V., & Hutchins, G. D. (2000). A crosslinguistic PET study of tone perception. Journal of Cognitive Neuroscience, 12(1), 207–222. https://doi.org/10.1162/089892900561841
Golfinopoulos, E., Tourville, J. A. A., Guenther, F. H. H., & Gol, E. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. NeuroImage, 52(3), 862–874. https://doi.org/10.1016/j.neuroimage.2009.10.023
Guenther, F. H., Ghosh, S. S., & Tourville, J. A. (2006). Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language, 96(3), 280–301. https://doi.org/10.1016/j.bandl.2005.06.001
Hao, Y.-C. (2018). Second language perception of Mandarin vowels and tones. Language and Speech, 61(1), 135–152. https://doi.org/10.1177/0023830917717759
Hickok, G. (2012). Computational neuroanatomy of speech production. Nature Reviews Neuroscience, 13(2), 135–145. https://doi.org/10.1038/nrn3158
Hickok, G., & Poeppel, D. (2007a). The cortical organisation for speech processing. Nature, 8(May), 393–402. https://doi.org/10.7554/eLife.14521
Hickok, G., & Poeppel, D. (2007b). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402. https://doi.org/10.1038/nrn2113
Hsieh, H.-I. (1970). The psychological reality of tone sandhi rules in Taiwanese. In Papers From the 6th Annual Regional Meeting of the Chicago Linguistic Society (pp. 489–503). Retrieved from https://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:The+psychological+reality+of+tone+sandhi+rules+in+Taiwanese#0.
Hsieh, L., Gandour, J. T., Wong, D., & Hutchins, G. D. (2001). Functional heterogeneity of inferior frontal gyrus is shaped by linguistic experience. Brain and Language, 76(3), 227–252. https://doi.org/10.1006/brln.2000.2382
Hsu, C. H., Lin, S. K., Hsu, Y. Y., & Lee, C. Y. (2014). The neural generators of the mismatch responses to Mandarin lexical tones: An MEG study. Brain Research, 1582, 154–166. https://doi.org/10.1016/j.brainres.2014.07.023
Huang, T., & Johnson, K. (2011). Language specificity in speech perception: Perception of mandarin tones by native and nonnative listeners. Phonetica, 67(4), 243–267. https://doi.org/10.1159/000327392
Hume, E., & Johnson, K. (2001). A model of the interplay of speech perception and phonology. Studies on the Interplay of Speech Perception and Phonology, 55, 1–22. Retrieved from https://corpus.linguistics.berkeley.edu/~kjohnson/papers/Hume_Johnson2001.pdf%5Cnpapers://e7d065ae-9998-4287-8af0-c9fa85af8e96/Paper/p23053.
Hyde, K. L., Lerch, J. P., Zatorre, R. J. R., Griffiths, T. D., Evans, A. C., & Peretz, I. (2007). Cortical thickness in congenital Amusia: When less is better than more. Journal of Neuroscience, 27(47), 13028–13032. https://doi.org/10.1523/JNEUROSCI.3039-07.2007
Hyde, K. L., Zatorre, R. J., & Peretz, I. (2011). Functional MRI evidence of an abnormal neural network for pitch processing in congenital Amusia. Cerebral Cortex, 21(2), 292–299. https://doi.org/10.1093/cercor/bhq094
Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1–2), 101–144. https://doi.org/10.1016/j.cognition.2002.06.001
Jamison, H. L., Watkins, K. E., Bishop, D. V. M., & Matthews, P. M. (2006). Hemispheric specialization for processing auditory nonspeech stimuli. Cerebral Cortex, 16(9), 1266–1275. https://doi.org/10.1093/cercor/bhj068
Jiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., & Yang, Y. (2012). Impaired categorical perception of lexical tones in Mandarin-speaking congenital amusics. Memory & Cognition, 40(7), 1109–1121. https://doi.org/10.3758/s13421-012-0208-2
Kell, C. A., Morillon, B., Kouneiher, F., & Giraud, A. L. (2011). Lateralization of speech production starts in sensory cortices—A possible sensory origin of cerebral left dominance for speech. Cerebral Cortex, 21(4), 932–937. https://doi.org/10.1093/cercor/bhq167
Klein, D., Zatorre, R. J. R., Milner, B., & Zhao, V. (2001). A Cross-linguistic PET study of tone perception in Mandarin Chinese and English speakers. NeuroImage, 13(4), 646–653. https://doi.org/10.1006/nimg.2000.0738
Kwok, V. P. Y., Wang, T., Chen, S., Yakpo, K., Zhu, L., Fox, P. T., & Tan, L.-H. (2015). Neural signatures of lexical tone reading. Human Brain Mapping, 36(1), 304–312. https://doi.org/10.1002/hbm.22629
Li, A., Xiong, Z., & Wang, X. (2006). Contrastive study on tonal patterns between accented and standard Chinese. In Proceedings of the 5th International Symposium on Chinese Spoken Language 2006 (pp. 157–168).
Li, X., & Chen, Y. (2015). Representation and processing of lexical tone and tonal variants: Evidence from the mismatch negativity. PLoS ONE, 10(12), 1–24. https://doi.org/10.1371/journal.pone.0143097
Li, X., Gandour, J. T., Talavage, T., Wong, D., Hoffa, A., Lowe, M., & Dzemidzic, M. (2010). Hemispheric asymmetries in phonological processing of tones versus segmental units. NeuroReport, 21(10), 690–694. https://doi.org/10.1097/WNR.0b013e32833b0a10
Liu, F., Chan, A. H. D., Ciocca, V., Roquet, C., Peretz, I., & Wong, P. C. M. (2016). Pitch perception and production in congenital amusia: Evidence from Cantonese speakers. The Journal of the Acoustical Society of America, 140(1), 563. https://doi.org/10.1121/1.4955182
Liu, F., Jiang, C., Thompson, W. F., Xu, Y., Yang, Y., & Stewart, L. (2012). The mechanism of speech processing in congenital amusia: Evidence from Mandarin speakers. PLoS ONE, 7(2), e30374. https://doi.org/10.1371/journal.pone.0030374
Liu, L., Peng, D., Ding, G., Jin, Z., Zhang, L., Li, K., & Chen, C. (2006). Dissociation in the neural basis underlying Chinese tone and vowel production. NeuroImage, 29(2), 515–523. https://doi.org/10.1016/j.neuroimage.2005.07.046
Loui, P., Alsop, D., & Schlaug, G. (2009). Tone deafness: A new disconnection syndrome? Journal of Neuroscience, 29(33), 10215–10220. https://doi.org/10.1523/JNEUROSCI.1701-09.2009
Loui, P., Li, H. C., & Schlaug, G. (2011). White matter integrity in right hemisphere predicts pitch-related grammar learning. NeuroImage, 55(2), 500–507. https://doi.org/10.1016/j.neuroimage.2010.12.022
Luo, H., Ni, J.-T., Li, Z.-H., Li, X.-O., Zhang, D.-R., Zeng, F.-G., & Chen, L. (2006). Opposite patterns of hemisphere dominance for early auditory processing of lexical tones and consonants. Proceedings of the National Academy of Sciences, 103(51), 19558–19563. https://doi.org/10.1073/pnas.0607065104
Meister, I. G., Wilson, S. M., Deblieck, C., Wu, A. D., & Iacoboni, M. (2007). The essential role of premotor cortex in speech perception. Current Biology, 17(19), 1692–1696. https://doi.org/10.1016/j.cub.2007.08.064
Mitterer, H., & Blomert, L. (2003). Coping with phonological assimilation in speech perception: Evidence for early compensation. Perception & Psychophysics, 65(6), 956–969. https://doi.org/10.3758/BF03194826
Mitterer, H., Csépe, V., Honbolygo, F., & Blomert, L. (2006). The recognition of phonologically assimilated words does not depend on specific language experience. Cognitive Science, 30(3), 451–479. https://doi.org/10.1207/s15516709cog0000_57
Myers, J., & Tsay, J. (2003). Investigating the phonetics of Mandarin tone sandhi. Taiwan Journal of Linguistics, 1(1), 29–68. https://doi.org/10.6519/TJL.2003.1(1).2.
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590. https://doi.org/10.1016/j.clinph.2007.04.026
Nan, Y., & Friederici, A. D. (2013). Differential roles of right temporal cortex and broca’s area in pitch processing: Evidence from music and mandarin. Human Brain Mapping, 34(9), 2045–2054. https://doi.org/10.1002/hbm.22046
Nan, Y., Sun, Y., & Peretz, I. (2010). Congenital amusia in speakers of a tone language: Association with lexical tone agnosia. Brain, 133(9), 2635–2642. https://doi.org/10.1093/brain/awq178
Nixon, J. S., Chen, Y., & Schiller, N. O. (2015). Multi-level processing of phonetic variants in speech production and visual word processing: Evidence from Mandarin lexical tones. Language, Cognition and Neuroscience, 30(5), 491–505. https://doi.org/10.1080/23273798.2014.942326
Niziolek, C. A., & Guenther, F. H. (2013). Vowel category boundaries enhance cortical and behavioral responses to speech FEEDBACK alterations. Journal of Neuroscience, 33(29), 12090–12098. https://doi.org/10.1523/JNEUROSCI.1008-13.2013
Ohala, J. J. (1993). Coarticulation and phonology. Language and speech (Vol. 36). https://doi.org/10.1177/002383099303600303.
Peng, S.-H. (2000). Lexical versus “phonological” representations of Mandarin sandhi tones. In M. B. Broe & J. B. Pierrehumbert (Eds.), Papers in laboratory phonology 5: Acquisition and the lexicon (1st ed., pp. 152–167). Cambridge (UK): Cambridge University Press.
Peretz, I. (2013). The biological foundations of music: Insights from congenital amusia. The psychology of music (3rd ed.). Elsevier Inc. https://doi.org/10.1016/B978-0-12-381460-9.00013-4.
Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as “asymmetric sampling in time.” Speech Communication, 41(1), 245–255. https://doi.org/10.1016/S0167-6393(02)00107-3
Politzer-Ahles, S., Schluter, K., Wu, K., & Almeida, D. (2016). Asymmetries in the perception of Mandarin tones: Evidence from mismatch negativity. Journal of Experimental Psychology: Human Perception and Performance, 42(10), 1547–1570. https://doi.org/10.1037/xhp0000242
Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191(1), 62–88. https://doi.org/10.1111/j.1749-6632.2010.05444.x
Pulvermüller, F., Kiff, J., & Shtyrov, Y. (2012). Can language-action links explain language laterality? An ERP study of perceptual and articulatory learning of novel pseudowords. Cortex, 48(7), 871–881. https://doi.org/10.1016/j.cortex.2011.02.006
Scharinger, M., Monahan, P. J., & Idsardi, W. J. (2016). Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations. NeuroImage, 128, 293–301. https://doi.org/10.1016/j.neuroimage.2016.01.003
Schönwiesner, M. (2005). Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. European Journal of Neuroscience, 22, 1521–1528. Retrieved from https://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2005.04315.x/full.
Scott, S. K., McGettigan, C., & Eisner, F. (2009). A little more conversation, a little less action–candidate roles for the motor cortex in speech perception. Nature Reviews Neuroscience, 10(4), 295–302. https://doi.org/10.1038/nrn2603
Shtyrov, Y., Kujala, T., Palva, S., Ilmoniemi, R. J., & Näätänen, R. (2000). Discrimination of speech and of complex nonspeech sounds of different temporal structure in the left and right cerebral hemispheres. NeuroImage, 12(6), 657–663. https://doi.org/10.1006/nimg.2000.0646
So, C. K., & Best, C. T. (2014). Phonetic influences on english and french listeners’ assimilation of mandarin tones to native prosodic categories. Studies in Second Language Acquisition, 36(2), 195–221. https://doi.org/10.1017/S0272263114000047
Speer, S. R., Shih, C.-L., &Slowiaczek, M. L. (2016). Prosodic structure in language understanding: Evidence from tone sandhi in Mandarin. https://doi.org/10.1177/002383098903200403.
Speer, S. R., Shih, C. L., & Slowiaczek, M. L. (1989). Prosodic structure in language understanding: Evidence from tone sandhi in mandarin. Language and Speech, 32(4), 337–354. https://doi.org/10.1177/002383098903200403
Sun, Y., Giavazzi, M., Adda-decker, M., Barbosa, L. S., Kouider, S., Bachoud-Lévi, A. C., Peperkamp, S. (2015). Complex linguistic rules modulate early auditory brain responses. Brain and Language, 149(2009), 55–65. https://doi.org/10.1016/j.bandl.2015.06.009.
Tavabi, K., Elling, L., Dobel, C., Pantev, C., & Zwitserlood, P. (2009). Effects of place of articulation changes on auditory neural activity: A magnetoencephalography study. PLoS ONE, 4(2). https://doi.org/10.1371/journal.pone.0004452.
Tillmann, B., Burnham, D., Nguyen, S., Grimault, N., Gosselin, N., & Peretz, I. (2011). Congenital amusia (or tone-deafness) interferes with pitch processing in tone languages. Frontiers in Psychology, 2(JUN), 120. https://doi.org/10.3389/fpsyg.2011.00120.
Tourville, J. A., Reilly, K. J., & Guenther, F. H. (2008). Neural mechanisms underlying auditory feedback control of speech. NeuroImage, 39(3), 1429–1443. https://doi.org/10.1016/j.neuroimage.2007.09.054
Tsay, J., &Myers, J. (1996). Taiwanese tone sandhi as allomorph selection. In Proceedings of Annual Meeting of the Berkeley Linguistics Society.
Wang, J., Zhang, C., Wan, S., & Peng, G. (2017). Is congenital amusia a disconnection syndrome? A study combining tract- and network-based analysis. Frontiers in Human Neuroscience, 11(September), 1–11. https://doi.org/10.3389/fnhum.2017.00473
Wang, W. S.-Y., & Li, K.-P. (1967). Tone 3 in Pekinese. Journal of Speech and Hearing Research, 10(3), 629–636. Retrieved from https://jslhr.asha.org/cgi/content/abstract/10/3/629.
Wong, P. C. M., Parsons, L. M., Martinez, M., & Diehl, R. L. (2004). The role of the insular cortex in pitch pattern perception: The effect of linguistic contexts. Journal of Neuroscience, 24(41), 9153–9160. https://doi.org/10.1523/JNEUROSCI.2225-04.2004
Xu, Y. (2004). Understanding tone from the perspective of production and perception. Language and Linguistics, 5(4), 757–797.
Xu, Y., & Emily Wang, Q. (2001). Pitch targets and their realization: Evidence from Mandarin Chinese. Speech Communication, 33(4), 319–337. https://doi.org/10.1016/S0167-6393(00)00063-7
Xu, Y., & Xu, C. X. (2005). Phonetic realization of focus in English declarative intonation. Journal of Phonetics, 33(2), 159–197. https://doi.org/10.1016/j.wocn.2004.11.001
Yu, Y. H., Shafer, V. L., & Sussman, E. S. (2017). Neurophysiological and behavioral responses of Mandarin lexical tone processing. Frontiers in Neuroscience, 11, 95. https://doi.org/10.3389/fnins.2017.00095
Zatorre, R. J. R. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11(10), 946–953. https://doi.org/10.1093/cercor/11.10.946
Zatorre, R. J. R., & Gandour, J. T. (2008). Neural specializations for speech and pitch: Moving beyond the dichotomies. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1493), 1087–1104. https://doi.org/10.1098/rstb.2007.2161
Zhang, C., Peng, G., Shao, J., & Wang, W. S.-Y. (2017). Neural bases of congenital amusia in tonal language speakers. Neuropsychologia, 97(July 2016), 18–28. https://doi.org/10.1016/j.neuropsychologia.2017.01.033.
Zhang, C., Xia, Q., & Peng, G. (2015). Mandarin third tone sandhi requires more effortful phonological encoding in speech production: Evidence from an ERP study. Journal of Neurolinguistics, 33, 149–162. https://doi.org/10.1016/j.jneuroling.2014.07.002
Zhang, J., & Lai, Y. (2010). Testing the role of phonetic knowledge in Mandarin tone sandhi. Phonology, 27(01), 153. https://doi.org/10.1017/S0952675710000060
Zhang, J., & Liu, J. (2016). The productivity of variable disyllabic tone sandhi in Tianjin Chinese. Journal of East Asian Linguistics, 25(1), 1–35. https://doi.org/10.1007/s10831-015-9135-0
Zheng, Z. Z., Vicente-Grabovetsky, A., MacDonald, E. N., Munhall, K. G., Cusack, R., & Johnsrude, I. S. (2013). Multivoxel patterns reveal functionally differentiated networks underlying auditory feedback processing of speech. Journal of Neuroscience, 33(10), 4339–4348. https://doi.org/10.1523/JNEUROSCI.6319-11.2013
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Chang, C.H.C., Kuo, WJ. (2020). Neural Processing of Tone Sandhi in Production and Perception: The Case of Mandarin Tone 3 Sandhi. In: Liu, H., Tsao, F., Li, P. (eds) Speech Perception, Production and Acquisition. Chinese Language Learning Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-7606-5_7
Download citation
DOI: https://doi.org/10.1007/978-981-15-7606-5_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-7605-8
Online ISBN: 978-981-15-7606-5
eBook Packages: EducationEducation (R0)