Skip to main content

Abstract

Cancer is the second leading cause of death worldwide, just behind cardiovascular diseases. In fact, there was an estimated 18.1 million new cancer cases and 9.6 million cancer deaths in 2018 around the world. Due to the continuously increasing global prevalence of malignancies, novel efficient therapeutics and treatment strategies are highly needed. The most common types of cancer treatment modalities include surgery, chemotherapy, and radiation therapy. At that, over 50% of all cancer patients receive chemotherapy in some stages of their disease. Although modern drugs are very efficient to kill tumor cells, they also affect normal healthy cells often causing intolerable side effects. In addition, drug resistance to chemotherapeutic agents is problematic. Several signaling pathways are found to be associated with cancer progression and survival. This book chapter presents an overview of various oncotherapies in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pineros M et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953

    CAS  PubMed  Google Scholar 

  2. Global Burden of Disease Cancer Collaboration, Christina Fitzmaurice, Allen C, Barber RM, Barregard L, Bhutta ZA et al (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 3(4):524–548

    Article  PubMed Central  Google Scholar 

  3. Falzone L, Salomone S, Libra M (2018) Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol 9:1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arruebo M, Vilaboa N, Saez-Gutierrez B, Lambea J, Tres A, Valladares M et al (2011) Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 3(3):3279–3330

    Article  CAS  Google Scholar 

  5. Fu B, Wang N, Tan HY, Li S, Cheung F, Feng Y (2018) Multi-component herbal products in the prevention and treatment of chemotherapy-associated toxicity and side effects: a review on experimental and clinical evidences. Front Pharmacol 9:1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7(3):339–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baskar R, Dai J, Wenlong N, Yeo R, Yeoh KW (2014) Biological response of cancer cells to radiation treatment. Front Mol Biosci 1:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wang JS, Wang HJ, Qian HL (2018) Biological effects of radiation on cancer cells. Mil Med Res 5(1):20

    PubMed  PubMed Central  Google Scholar 

  9. Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sadeghi M, Enferadi M, Shirazi A (2010) External and internal radiation therapy: past and future directions. J Cancer Res Ther 6(3):239–248

    Article  CAS  PubMed  Google Scholar 

  11. Chandarana H, Wang H, Tijssen RHN, Das IJ (2018) Emerging role of MRI in radiation therapy. J Magn Reson Imaging 48(6):1468–1478

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kammerer E, Fenoglietto P, Bourgier C (2018) Modalities and advantages of image guided radiation therapy of breast cancer in adjuvant setting. Cancer Radiother 22(6–7):581–585

    Article  CAS  PubMed  Google Scholar 

  13. Korzeniowski MA, Crook JM (2017) Contemporary role of radiotherapy in the management of penile cancer. Transl Androl Urol 6(5):855–867

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liauw SL, Connell PP, Weichselbaum RR (2013) New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci Transl Med 5(173):173sr2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vlashi E, Pajonk F (2015) Cancer stem cells, cancer cell plasticity and radiation therapy. Semin Cancer Biol 31:28–35

    Article  CAS  PubMed  Google Scholar 

  16. Perez-Herrero E, Fernandez-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    Article  CAS  PubMed  Google Scholar 

  17. Chabner BA, Roberts TG Jr (2005) Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5(1):65–72

    Article  CAS  PubMed  Google Scholar 

  18. Coulson A, Levy A, Gossell-Williams M (2014) Monoclonal antibodies in cancer therapy: mechanisms, successes and limitations. West Indian Med J 63(6):650–654

    CAS  PubMed  Google Scholar 

  19. Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S (2011) Analysis of anticancer drugs: a review. Talanta 85(5):2265–2289

    Article  CAS  PubMed  Google Scholar 

  20. Fernando J, Jones R (2015) The principles of cancer treatment by chemotherapy. Surgery (Oxford) 33(3):131–135

    Article  Google Scholar 

  21. Huang CY, Ju DT, Chang CF, Muralidhar Reddy P, Velmurugan BK (2017) A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine (Taipei) 7(4):23

    Article  Google Scholar 

  22. Meegan MJ, O’Boyle NM (2019) Special issue “anticancer drugs”. Pharmaceuticals (Basel) 12(3):134

    Article  CAS  Google Scholar 

  23. Aggarwal V, Kashyap D, Sak K, Tuli HS, Jain A, Chaudhary A et al (2019) Molecular mechanisms of action of tocotrienols in cancer: recent trends and advancements. Int J Mol Sci 20(3):656

    Article  CAS  PubMed Central  Google Scholar 

  24. Aggarwal V, Tuli HS, Kaur J, Aggarwal D, Parashar G, Chaturvedi Parashar N et al (2020) Garcinol exhibits anti-neoplastic effects by targeting diverse oncogenic factors in tumor cells. Biomedicine 8(5):103

    Google Scholar 

  25. Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A et al (2020) Molecular mechanisms of action of epigallocatechin gallate in cancer: recent trends and advancement. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2020.05.011

  26. Aggarwal V, Tuli HS, Thakral F, Singhal P, Aggarwal D, Srivastava S et al (2020) Molecular mechanisms of action of hesperidin in cancer: recent trends and advancements. Exp Biol Med (Maywood) 245(5):486–497

    Article  CAS  Google Scholar 

  27. Aggarwal V, Banday AZ, Jindal AK, Das J, Rawat A (2020) Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis 7(1):26–37

    Article  CAS  PubMed  Google Scholar 

  28. Cragg GM, Pezzuto JM (2016) Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract 25(Suppl 2):41–59

    Article  PubMed  Google Scholar 

  29. Paier CRK, Maranhao SS, Carneiro TR, Lima LM, Rocha DD, Santos RDS et al (2018) Natural products as new antimitotic compounds for anticancer drug development. Clinics (Sao Paulo) 73(Suppl 1):e813s

    Article  Google Scholar 

  30. Cooper GM, Hausman RE (2000) The development and causes of cancer. In: The cell: a molecular approach, pp 725–766

    Google Scholar 

  31. Health NIo. Biological Sciences Curriculum Study. NIH Curriculum Supplement Series [Internet] (2007) Understanding emerging and re-emerging infectious diseases. Information about Mental Illness and the Brain. 2018

    Google Scholar 

  32. Aggarwal V, Priyanka K, Tuli HS (2020) Emergence of circulating microRNAs in breast cancer as diagnostic and therapeutic efficacy biomarkers. Mol Diagn Ther 24(2):153–173

    Article  CAS  PubMed  Google Scholar 

  33. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K et al (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomol Ther 9(11):735

    CAS  Google Scholar 

  34. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y (2020) Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 5:28

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jiang WG, Sanders AJ, Katoh M, Ungefroren H, Gieseler F, Prince M et al (2015) Tissue invasion and metastasis: molecular, biological and clinical perspectives. Semin Cancer Biol 35(Suppl):S244–SS75

    Article  PubMed  CAS  Google Scholar 

  36. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee YT, Tan YJ, Oon CE (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834:188–196

    Article  CAS  PubMed  Google Scholar 

  38. Aggarwal V, Das A, Bal A, Srinivasan R, Das R, Prakash G et al (2019) MYD88, CARD11, and CD79B oncogenic mutations are rare events in the Indian cohort of de novo nodal diffuse large B-cell lymphoma. Appl Immunohistochem Mol Morphol 27(4):311–318

    Article  CAS  PubMed  Google Scholar 

  39. Bottini M, Sacchetti C, Pietroiusti A, Bellucci S, Magrini A, Rosato N et al (2014) Targeted nanodrugs for cancer therapy: prospects and challenges. J Nanosci Nanotechnol 14(1):98–114

    Article  CAS  PubMed  Google Scholar 

  40. Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L (2016) Current challenges in cancer treatment. Clin Ther 38(7):1551–1566

    Article  PubMed  Google Scholar 

  41. Clarkson B, Strife A, Wisniewski D, Lambek CL, Liu C (2003) Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 17(7):1211–1262

    Article  CAS  PubMed  Google Scholar 

  42. Flis S, Chojnacki T (2019) Chronic myelogenous leukemia, a still unsolved problem: pitfalls and new therapeutic possibilities. Drug Des Devel Ther 13:825–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baselga J, Bhardwaj N, Cantley LC, DeMatteo R, DuBois RN, Foti M et al (2015) AACR cancer Progress report 2015. Clin Cancer Res 21(19 Suppl):S1–S128

    Article  PubMed  Google Scholar 

  44. Locke WJ, Guanzon D, Ma C, Liew YJ, Duesing KR, Fung KYC et al (2019) DNA methylation cancer biomarkers: translation to the clinic. Front Genet 10:1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lyman GH, Moses HL (2016) Biomarker tests for molecularly targeted therapies--the key to unlocking precision medicine. N Engl J Med 375(1):4

    Article  PubMed  Google Scholar 

  46. Seyhan AA, Carini C (2019) Are innovation and new technologies in precision medicine paving a new era in patients centric care? J Transl Med 17(1):114

    Article  PubMed  PubMed Central  Google Scholar 

  47. Simon R, Roychowdhury S (2013) Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov 12(5):358–369

    Article  CAS  PubMed  Google Scholar 

  48. Iriart JAB (2019) Precision medicine/personalized medicine: a critical analysis of movements in the transformation of biomedicine in the early 21st century. Cad Saude Publica 35(3):e00153118

    Article  PubMed  Google Scholar 

  49. Salari P, Larijani B (2017) Ethical issues surrounding personalized medicine: a literature review. Acta Med Iran 55(3):209–217

    PubMed  Google Scholar 

  50. Senn S (2018) Statistical pitfalls of personalized medicine. Nature 563(7733):619–621

    Article  CAS  PubMed  Google Scholar 

  51. Sharrer GT (1606) Personalized medicine: ethical aspects. Methods Mol Biol 2017:37–50

    Google Scholar 

  52. Berger MF, Mardis ER (2018) The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol 15(6):353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brittain HK, Scott R, Thomas E (2017) The rise of the genome and personalised medicine. Clin Med (Lond) 17(6):545–551

    Article  Google Scholar 

  54. Chakraborty S, Hosen MI, Ahmed M, Shekhar HU (2018) Onco-multi-OMICS approach: a new frontier in cancer research. Biomed Res Int 2018:9836256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Di Sanzo M, Cipolloni L, Borro M, La Russa R, Santurro A, Scopetti M et al (2017) Clinical applications of personalized medicine: a new paradigm and challenge. Curr Pharm Biotechnol 18(3):194–203

    Article  PubMed  CAS  Google Scholar 

  56. Goetz LH, Schork NJ (2018) Personalized medicine: motivation, challenges, and progress. Fertil Steril 109(6):952–963

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hood L, Rowen L (2013) The human genome project: big science transforms biology and medicine. Genome Med 5(9):79

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1(2):182–188

    Article  PubMed  PubMed Central  Google Scholar 

  59. National Academies of Sciences, Engineering, and Medicine (2016) Biomarker tests for molecularly targeted therapies: key to unlocking precision medicine. National Academies Press

    Google Scholar 

  60. Kamalakaran S, Varadan V, Janevski A, Banerjee N, Tuck D, McCombie WR et al (2013) Translating next generation sequencing to practice: opportunities and necessary steps. Mol Oncol 7(4):743–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meldrum C, Doyle MA, Tothill RW (2011) Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev 32(4):177–195

    PubMed  PubMed Central  Google Scholar 

  62. Kim RY, Xu H, Myllykangas S, Ji H (2011) Genetic-based biomarkers and next-generation sequencing: the future of personalized care in colorectal cancer. Per Med 8(3):331–345

    Article  PubMed  PubMed Central  Google Scholar 

  63. Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M et al (2018) The growing role of precision and personalized medicine for cancer treatment. Technology (Singap World Sci) 6(3–4):79–100

    Google Scholar 

  64. Ahmed S, Zhou Z, Zhou J, Chen SQ (2016) Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genomics Proteomics Bioinformatics 14(5):298–313

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pasipoularides A (2017) Genomic translational research: paving the way to individualized cardiac functional analyses and personalized cardiology. Int J Cardiol 230:384–401

    Article  PubMed  Google Scholar 

  66. Jones D, Hofmann L, Quinn S (2009) 21st century medicine: a new model for medical education and practice. The Institute for Functional Medicine, Gig Harbor, WA

    Google Scholar 

  67. Verma M (2012) Personalized medicine and cancer. J Pers Med 2(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Genetics home reference: glossary. U.S. National Institutes of Health, U.S. National Library of Medicine - Personalized Medicine. Available from: http://ghr.nlm.nih.gov/glossary

  69. Cho SH, Jeon J, Kim SI (2012) Personalized medicine in breast cancer: a systematic review. J Breast Cancer 15(3):265–272

    Article  PubMed  PubMed Central  Google Scholar 

  70. Spear BB, Heath-Chiozzi M, Huff J (2001) Clinical application of pharmacogenetics. Trends Mol Med 7(5):201–204

    Article  CAS  PubMed  Google Scholar 

  71. Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC et al (2004) Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay. Am J Pathol 164(1):35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hornberger J, Cosler LE, Lyman GH (2005) Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care 11(5):313–324

    PubMed  Google Scholar 

  73. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24(23):3726–3734

    Article  CAS  PubMed  Google Scholar 

  74. MammaPrintAgendia. Available from: http://www.agendia.com/pages/mammaprint/21.php

  75. Salgia R, Hensing T, Campbell N, Salama AK, Maitland M, Hoffman P et al (2011) Personalized treatment of lung cancer. Semin Oncol 38(2):274–283

    Article  CAS  PubMed  Google Scholar 

  76. Curran MP (2012) Crizotinib: in locally advanced or metastatic non-small cell lung cancer. Drugs 72(1):99–107

    Article  CAS  PubMed  Google Scholar 

  77. Johnston S, Martin M, Di Leo A, Im SA, Awada A, Forrester T et al (2019) MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer 5:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD et al (2019) Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 381(16):1535–1546

    Article  CAS  PubMed  Google Scholar 

  79. Ascierto PA, Ferrucci PF, Fisher R, Del Vecchio M, Atkinson V, Schmidt H et al (2019) Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat Med 25(6):941–946

    Article  CAS  PubMed  Google Scholar 

  80. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP et al (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  PubMed  Google Scholar 

  81. Pembrolizumab. Available from: https://www.fda.gov/drugs/fda-expands-pembrolizumab-indication-first-line-treatment-nsclc-tps-1

  82. Venetoclax. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-venetoclax-cll-and-sll

  83. Fischer K, Al-Sawaf O, Bahlo J, Fink AM, Tandon M, Dixon M et al (2019) Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med 380(23):2225–2236

    Article  CAS  PubMed  Google Scholar 

  84. Jain N, Keating M, Thompson P, Ferrajoli A, Burger J, Borthakur G et al (2019) Ibrutinib and venetoclax for first-line treatment of CLL. N Engl J Med 380(22):2095–2103

    Article  CAS  PubMed  Google Scholar 

  85. Seymour JF, Kipps TJ, Eichhorst B, Hillmen P, D’Rozario J, Assouline S et al (2018) Venetoclax-rituximab in relapsed or refractory chronic lymphocytic leukemia. N Engl J Med 378(12):1107–1120

    Article  CAS  PubMed  Google Scholar 

  86. Gonzalez-Martin A, Pothuri B, Vergote I, DePont Christensen R, Graybill W, Mirza MR et al (2019) Niraparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 381(25):2391–2402

    Article  CAS  PubMed  Google Scholar 

  87. de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S et al (2020) Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med 382(22):2091–2102

    Article  PubMed  Google Scholar 

  88. Kopetz S, Grothey A, Yaeger R, Van Cutsem E, Desai J, Yoshino T et al (2019) Encorafenib, binimetinib, and cetuximab in braf v600e-mutated colorectal cancer. N Engl J Med 381(17):1632–1643

    Article  CAS  PubMed  Google Scholar 

  89. Encorafenib. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-encorafenib-combination-cetuximab-metastatic-colorectal-cancer-braf-v600e-mutation

  90. Shanafelt TD, Wang XV, Kay NE, Hanson CA, O’Brien S, Barrientos J et al (2019) Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med 381(5):432–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, V. et al. (2020). History of Oncotherapies in Cancer Biology. In: Tuli, H.S. (eds) Drug Targets in Cellular Processes of Cancer: From Nonclinical to Preclinical Models. Springer, Singapore. https://doi.org/10.1007/978-981-15-7586-0_1

Download citation

Publish with us

Policies and ethics