Skip to main content

Effect of Heavy Metals on Activities of Soil Microorganism

  • Chapter
  • First Online:
Microbial Rejuvenation of Polluted Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 27))

Abstract

Heavy metals are ubiquitous elements, and some of them play unique roles in biological systems. They are key components of soil as some of them are eco-friendly in their geochemical state. The continual increase in their concentration due to the increasing anthropogenic influences such as mining, agricultural process, and combustion of fossil fuels among others is the cause for concern. Most of these metals though present in various components of the environment are more concentrated in the soil, which acts as a natural storeroom for environmental waste from all other media. The high content of these metals in soil is toxic not only to plants and animals but also to microorganisms that play an indispensable role in soil and aid the sustenance of natural cycles. This chapter examines the effect of heavy metal on soil microorganisms. The effect of heavy metals on microbial biomass, population, activities, and diversity is discussed. The methods for assessing heavy metal tolerance in microorganisms are also presented, and finally a brief review on the mechanisms of adaptation of soil microorganisms to high concentration of heavy metals is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdousalam A (2010) Effect of heavy metals on soil microbial processes and population. Egypt Acad J Biol Sci 2(2):9–14. https://doi.org/10.21608/EAJBSG.2010.16703

  • Adília O, Pampulha M (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102(3):157–161. https://doi.org/10.1263/jbb.102.157

    Article  CAS  Google Scholar 

  • Ahemad M (2012) Implication of bacterial resistance against heavy metals in bioremediation: a review. J Inst Integr Omics Appl Biotechnol 3:39–46

    CAS  Google Scholar 

  • Akmal M, Jianming X (2009) Microbial biomass and bacterial community changes by Pb contamination in acidic soil. J Agric Biol Sci 1:30–37

    Google Scholar 

  • Álvarez A, Catalano SA, Amoroso MJ (2013) Heavy metal resistant strains are widespread along Streptomyces phylogeny. Mol Phylogenet Evol 66(3):1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Aly M (2018) Bioremediation of hazardous heavy metals from solutions or soil using living or dead microbial biomass. IOSR J Pharm Biol Sci 13:75–80

    Google Scholar 

  • Ashraf R, Ali TA (2007) Effect of heavy metals on soil microbial community and mung beans seed germination. Pak J Bot 39(2):629–636

    Google Scholar 

  • Ayangbenro SA, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:21–29

    Article  CAS  Google Scholar 

  • Bääth E (1989) Effects of heavy metals in soils on microbial processes and population (a review). Water Air Soil Pollut 47:335–379

    Article  Google Scholar 

  • Banerjee S, Gothalwal R, Sahu PK et al (2015) Microbial observation in bioaccumulation of heavy metals from the ash dyke of thermal power plants of Chhattisgarh, India. Adv Biosci Biotechnol 6:131–138. https://doi.org/10.4236/abb.2015.62013

    Article  Google Scholar 

  • Bong CW, Malfatti F, Azam F, Obayashi Y, Suzuki S (2010) The effect of zinc exposure on the bacteria abundance and proteolytic activity in seawater. In: Hamamura N, Suzuki S, Mendo S, Barroso CM, Iwata H, Tanabe S (eds) Interdisciplinary studies on environmental chemistry — biological responses to contamination. TERRAPUB, pp 57–63

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    Article  CAS  PubMed  Google Scholar 

  • Castro CB, Lopes A, Moreira IV, Silva EF, Manaia CM, Olga C (2015) Wastewater reuse in irrigation: a microbiological perspective on implications in soil fertility and human and environmental health. Environ Int 75:117–135

    Article  CAS  Google Scholar 

  • Chen GQ, Chen Y, Zeng GM et al (2010) Speciation of cadmium and changes in bacterial communities in red soil following application of cadmium-polluted compost. Environ Eng Sci 27(12):1019–1026

    Article  CAS  Google Scholar 

  • Chen J, He F, Zhang X et al (2014) Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol Ecol 87(1):164–169

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Feng H, Xuhui Z et al (2017) Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. J Mater Environ Sci 87:2028–2508. http://www.jmaterenvironsci.com/

    Google Scholar 

  • Chibuike GU, Obior SC (2014) Heavy metal polluted soils: effect on plants and bioremediation. Appl Environ Soil Sci 2014:752708, p12. https://doi.org/10.1155/2014/752708

    Article  CAS  Google Scholar 

  • Chu D (2018a) Effects of heavy metals on soil microbial community. ICAESEE 2017 IOP Publishing. IOP Conf Ser Earth Environ Sci 113:012009. https://doi.org/10.1088/1755-1315/113/1/012009

    Article  Google Scholar 

  • Clipson N Gleeson D (2012) Fungal biogeochemistry: a central role in the environmental fate of lead. Curr Biology 22(3):82–84. https://doi.org/10.1016/j.cub.2011.12.037

  • Crowley D (2008) Impacts of metals and metalloids on soil microbial diversity and ecosystem function. J Soil Sci Plant Nutr v 8 noespecial 6–11. http://dx.doi.org/10.4067/S0718-27912008000400003

    Google Scholar 

  • Dian Chu (2018b) Effects of heavy metals on soil microbial community. In: IOP conference series: Earth and environmental science, Harbin, China, third international conference on advances in energy resources and environment engineering, December 2017, pp 8–10

    Google Scholar 

  • Dahlin S, Witter E, Märtensson A et al (1997) Where’s the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil Biol Biochem 29:1405–1415

    Article  CAS  Google Scholar 

  • Djukic D, Mandic L (2000) Microorganisms and technogenic pollution of agroecosystem. Acta. Agricult. Serbica 5(10):37–44

    Google Scholar 

  • Donmez G, Aksu Z (1999) The effect of copper (II) ions on the growth and bioaccumulation properties of some yeasts. Process Biochem 35:135–142

    Article  CAS  Google Scholar 

  • El Baz S (2015) Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. Scientific World J. 14p. Available: https://www.hindawi.com/journals/tswj/2015/761834/

  • Fazekašova D, Fazekaš J (2019) Functional diversity of soil microorganisms in the conditions of an ecological farming system. Folia Oecol 46:2–10. https://doi.org/10.2478/foecol-2019-0017

    Article  Google Scholar 

  • Filip Z (2002) International approach to assessing soil quality by ecologically related biological parameters. Agric Ecosyst Environ 88(2):689712

    Article  Google Scholar 

  • Freitas O, Rui B, Delerue-Matos C (2006) Adsorption study of lead by Ascophyllum nodosum using a factorial experimental design. In: Combined and hybrid adsorbents. Springer, Dordrecht, pp 269–274

    Chapter  Google Scholar 

  • Gadd GM (2009) Heavy metal pollutants: environmental and biotechnological aspects. In: Encyclopedia of microbiology. Elsevier, Oxford, pp 321–334

    Chapter  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. https://doi.org/10.1099/mic.0.037143-0

    Article  CAS  PubMed  Google Scholar 

  • Gaidi A (2010) Effect of heavy metals on soil microbial processes and population. Egypt Acad J Biol Sci 2(2):9–14

    Google Scholar 

  • Garbisu C, Alkorta I (2003) Mineral processing. Eur J Miner Process Environ Prot 3(1):58–66

    Google Scholar 

  • Garbisu C, González S, Yang WH, Yee BC, Carlson DE, Yee A, Smith NR, Otero R, Buchanan BB, Leighton T (1995) Physiological mechanisms regulating the conversion of selenite to elemental selenium by bacillus subtilis. BioFactors 5:29–37

    Google Scholar 

  • Garbisu C, Ishii T, Smith NR et al (1997a) Mechanisms regulating the reduction of selenite by aerobic gram (+) and (−) bacteria. In: Bioremediation of inorganics. Battelle Press, Columbu, pp 125–131

    Google Scholar 

  • Garbisu C, Ishii T, Leighton T et al (1997b) Bacterial reduction of selenite to elemental selenium. Chem Geol 132:199–204

    Article  Google Scholar 

  • Ghorbani NR, Salehrastin N, Moeini A (2002) Heavy metals affect the microbial populations and their activities. Proc 17th World Congress Soil Sci 2234:1–11

    Google Scholar 

  • Gilmour C, Riedel G (2009) Biogeochemistry of trace metals and metalloids. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Amsterdam, 7–15

    Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47(6):453–467

    Article  CAS  PubMed  Google Scholar 

  • Hagman D, Goodey N, Mathieu C et al (2015) Effect of metal contamination on microbial enzymatic activity in soil. Soil Biol Biochem 91:291–297

    Article  CAS  Google Scholar 

  • Hao X, Taghavi S et al (2014) Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Int J Phytoremediation 16:179–202

    Article  CAS  PubMed  Google Scholar 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremediation 19:522–529. https://doi.org/10.1080/15226514.2016.1267696

    Article  CAS  PubMed  Google Scholar 

  • He LM, Tebo BM (1998) Surface charge properties of and cu (II) adsorption by spores of the marine Bacillus sp. strain SG-1. Appl Environ Microbiol 64:1123–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiroki M (1992) Effects of heavy metal contamination on soil microbial population. Soil Sci Plant Nutr 38(1):141–147. https://doi.org/10.1080/00380768.1992.10416961

    Article  CAS  Google Scholar 

  • Huang PM, Wang MC, Wang MK (2004) Mineral–organic– microbial interactions. In: Hillel D, Rosenzweig C, Powlson DS, Scow KM, Singer MJ, Sparks DL, Hatfield J (eds) Encyclopedia of soils in the environment. Elsevier, Amsterdam, pp 486–499

    Google Scholar 

  • Huang DL, Zeng GM, Feng CL et al (2010) Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress. Chemosphere 81:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Iram S, Zaman A, Iqbal Z et al (2013) Heavy metal tolerance of fungus isolated from soil contaminated with sewage and industrial wastewater. Pol J Environ Stud 22:691–697

    CAS  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Jacoby R, Peukert M, Succurro A, Koprivova A, Dopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617. https://doi.org/10.3389/fpls.2017.01617

    Google Scholar 

  • Jadwiga W, Agata B, Mirosaw K et al (2013) Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes. J Elementol 18:769–796. https://doi.org/10.5601/jelem.2013.18.4.455

    Article  Google Scholar 

  • Jansen E, Michels M, Til M et al (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fertil Soils 17:177–184

    Article  Google Scholar 

  • Jaroslawiecka A, Piotrowska Z (2014) Lead resistance in micro-organisms. Microbiology 160:12–25. https://doi.org/10.1099/mic.0.070284-0

    Article  CAS  PubMed  Google Scholar 

  • Javaid A, Bajwa R, Manzoor T (2011) Biosorption of heavy metals by pretreated biomass of Aspergillus Niger. Pak J Bot 43:419–425

    CAS  Google Scholar 

  • Jin Y, Luan Y, Ning Y, Wang L (2018) Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl Sci-Basel 8

    Google Scholar 

  • Jiwan S, Ajay K (2011) Review paper effects of heavy metals on soil, plants, human health and aquatic life. Int J Res Chem Environ 1(2):15-21. ISSN 2248-9649

    Google Scholar 

  • John C (2017) Living Soils: the role of microorganisms in soil health. Strategic analysis paper. Future Directions International Pty Ltd., Australia 7

    Google Scholar 

  • Joonu J, Divya P (2017) Heavy metal induced resistance of Bacteria isolated from Tamilnadu metal industry. J Earth Sci Environ Stud 12(4):2472-6397 https://doi.org/10.25177/JESES.2.2.4

  • Joshi J, Sahu O (2014) Adsorption of heavy metals by biomass. J Appl Environ Microbiol 2:23–27

    Google Scholar 

  • Kandeler E, Kampichler C, Horak O (2000) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23:299–303

    Article  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69. https://doi.org/10.1016/j.biotechadv.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  • Kazaure MB (2018) Distribution of bacteria in lead contaminated soil in Anka local government area, Zamfara state, Nigeria. Acta Sci Microbiol. 17:53–60

    Google Scholar 

  • Kouchou A, Rais N, Elsass J et al (2018) Effects of long-term heavy metals contamination on soil microbial characteristics in calcareous agricultural lands (Saiss plain, North Morocco). J Mater Environ Sci 8(2):691–695

    Google Scholar 

  • Krumins JA, Goodey NM, Gallagher FJ (2015) Plant-soil interactions in metal contaminated soils. Soil Biol Biochem 80:224–231

    Article  CAS  Google Scholar 

  • Kumar V, Singh S, Singh J (2015) Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol 94:807–814

    Article  CAS  PubMed  Google Scholar 

  • Kummerer K (2004) Resistance in the environment. J Antimicrob Chemother 54(2):311–320

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept & review. Soil Biol Biochem 83:184

    Article  CAS  Google Scholar 

  • Lenart-Boroń A, Wolny-Koładka K (2015) Heavy metal concentration and the occurrence of selected microorganisms in soils of a steelworks area in Poland. Plant Soil Environ 61(6):273–278

    Article  CAS  Google Scholar 

  • Li Q (2004) Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Sep Purif Technol 34(3):135–142

    Article  CAS  Google Scholar 

  • Li Q, Qingjing H, Zhang C et al (2018) Effects of Pb, cd, Zn, and cu on soil enzyme activity and soil properties related to agricultural land-use practices in karst area contaminated by Pb-Zn tailings. Pol J Environ Stud 27(6):2623–2632

    Article  CAS  Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Annu Rev Microbial 47(1):263–290. https://doi.org/10.1146/annurev.mi.47.100193.001403

  • MacNaughton SJ, Stephen JR, Venosa AD et al (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markowicz A, Cycoń M, Piotrowska-Seget Z (2016) Microbial community structure and diversity in long-term hydrocarbon and heavy metal contaminated soils. Int J Environ Res 10(2):321–332

    CAS  Google Scholar 

  • Matyar F, Kaya A, Dinçer S (2008) Antibacterial agents and heavy metal resistance in gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Sci Total Environ 407:279–285

    Article  CAS  PubMed  Google Scholar 

  • McGrath SP, Chang AC, Page AL et al (1994) Land application of sewage sludge: scientific perspectives of heavy metal loading limits in Europe and the United States. Environ Rev 2(1):108–118

    Article  CAS  Google Scholar 

  • McGrath SP, Chaudri AM Giller K (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14(2):94–104. https://doi.org/10.1007/BF01569890

  • Megharaj KVM, Sethunathan N, Naidu R (2003) Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. J Adv Environ Res 8:121–135

    Article  CAS  Google Scholar 

  • Mengoni A, Gonnelli C, Galardi F et al (2000) Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L.(Caryophyllaceae): a random amplified polymorphic DNAanalysis. Mol Ecol 9:1319–1324. https://doi.org/10.1046/j.1365-294x.2000.01011.x

    Article  CAS  PubMed  Google Scholar 

  • Moreira MS, Lange A, Klauberg-Filho O et al (2008) Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites. Ann Braz Acad Sci 80(4):749–761

    Article  CAS  Google Scholar 

  • Moreno JL, Hernandez T, Perez T (2002) Toxicity of cadmium to soil microbial activity: effects of sewage sludge addition to soil on the ecological dose. Appl Soil Ecol 21:149–158

    Article  Google Scholar 

  • Mustapha MU, Halimoon N (2015) Screening and isolation of heavy metal tolerant bacteria in industrial effluent. Proc Environ Sci 30:33–37. https://doi.org/10.1016/j.proenv.2015.10.006

    Article  CAS  Google Scholar 

  • Nair S, Chandramohan D, Bharathi L (1992) Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics. Water Res 26:431–434 90042-3

    Google Scholar 

  • Nanda S, Jayanthi A (2011) Impact of heavy metals on the rhizosphere microflora of Jatropha multifida and their effective remediation. African J Biotechnol 10(56):11948–11955. 26 https://doi.org/10.5897/AJB10.1588. ISSN: 1684–5315

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  • Nweken CO, Alisi C, Okolo J et al (2007) Toxicity of zinc to heterotrophic bacteria from a tropical river sediment. Appl Ecol Environ Res 5(1):123–132

    Article  Google Scholar 

  • Oijagbe I, Yusuf AB (2019) Effects of heavy metals on soil microbial biomass carbon. MOJ Biology and Medicine, 4(1):12–16. https://doi.org/10.15406/mojbm.2019.04.00109

  • Ortiz-Ojeda P, Ogata-Gutiérrez K, Zúñiga-Dávila D (2017) Evaluation of plant growth promoting activity and heavy metal tolerance of psychrotrophic bacteria associated with maca (Lepidium meyenii Walp.) rhizosphere. AIMS Microbiol 3(2):279–292. https://doi.org/10.3934/microbiol.2017.2.279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Lee SJ, Lee ME et al (2016) Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar. Environ Sci Process 18:514–520

    CAS  Google Scholar 

  • Paulsson MB, Nyström HB (2000) Long-term toxicity of zinc to bacteria and algae in periphyton communities from the river Göta Älv, based on a microcosm study. Aquat Toxicol 47:243–257

    Article  CAS  Google Scholar 

  • Pečiulytė D, Dirginčiutė-Volodkien V (2009) Effect of long-term industrial pollution on microorganisms in soil of deciduous forests situated along a pollution gradient next to a fertilizer factory. Abundance and diversity of soil fungi. Ekologija 55(2):133–141. https://doi.org/10.2478/v10055-009-0017-5

    Article  CAS  Google Scholar 

  • Rajapaksha C, Tobor-Kaplon M, Baath E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973. https://doi.org/10.1128/AEM.70.5.2966-2973.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey PW, Rilling MC, Feris KP, Gordon NS et al (2005) Relationship between communities and processes; new insights from a field study of a contaminated ecosystem. Ecol Lett 8:1201–1210

    Article  PubMed  Google Scholar 

  • Rao MA, Scelza R, Acevedo F, Diez MC, Gianfreda L (2014) Enzymes as useful tools for environmental purposes. Chemosphere 107:145

    Article  CAS  PubMed  Google Scholar 

  • Rhee JS, Raisuddin S, Lee KW, Seo JS, Ki JS, Kim IC (2012) Heat shock protein (hsp) gene responses of the intertidal copepod tigriopus japonicus to environmental toxicants. Comp Biochem Physiol C Toxicol Pharmacol 149:104–112. https://doi.org/10.1016/j.cbpc.2008.07.009

  • Roane T, Kellogg S (1996) Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol 42:593–603. https://doi.org/10.1139/m96-080

    Article  CAS  PubMed  Google Scholar 

  • Rouch DA, Lee TOB, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanisms—choice in bacterial resistance. J Ind Microbiol 14:132–141

    Article  CAS  PubMed  Google Scholar 

  • Sandaa R, Torsvik V, Enger O et al (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251

    Article  CAS  PubMed  Google Scholar 

  • Sardar CA, Qing H, El-Latif A et al (2007) Soil enzymatic activities and microbial community structure with different application rates of cd and Pb. J Environ Sci 19:834

    Article  Google Scholar 

  • Saunders JE, Jastrzembski BG, Buckey JC (2013) Hearing loss and heavy metal toxicity in a Nicaraguan mining community: audiological results and case reports. Audiol Neurotol 18(2):101–113

    Article  CAS  Google Scholar 

  • Sayer JA, Cotter-Howells JD, Watson C et al (1999) Lead mineral transformation by fungi. Curr Biol 9:691–694

    Article  CAS  PubMed  Google Scholar 

  • Seshadri NS, Naidu R (2015) Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. J Soil Sci Plant Nutr 15(2):524–548

    Google Scholar 

  • Shun-hong H, Peng B, Yang, Z, Zhou L (2009) Chromium accumulation, microorganism population and enzyme activities in soils around chromiumcontaining slag heap of steel alloy factory. Transactions of Nonferrous Metals Society of China 19(1):241–248. http://dx.doi.org/10.1016/S1003-6326(08)60259-9

    Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I et al (2015) Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health 12:12371–12390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen G, Lu Y, Zhou Q (2005) Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzymes. Chemosphere 61:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Prasad SM (2015) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 12:353–366

    Article  CAS  Google Scholar 

  • Six J, Frey SD, Thiet RK (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569

    Article  CAS  Google Scholar 

  • Sodango T, Li X, Sha J et al (2018) Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: impacts and mitigation approaches narrative review. J Health Pollut 8:17

    Article  Google Scholar 

  • Sonil N, Jayanthi A (2011) Impact of heavy metals on the rhizosphere microflora of Jatropha multifida and their effective remediation. African J Biotechnol 10(56):11948–11955. https://doi.org/10.5897/AJB10.1588. ISSN: 1684–5315

  • Soraia E (2017) Bioremediation of heavy metals by actinobacteria: review American journal of innovative research and applied sciences. 359–365. I www.american-jiras.com. ISSN 2429–5396

  • Sparks DL (2005) Toxic metals in the environment: the role of surfaces. Elements 1(4):193–197

    Google Scholar 

  • Tayebi A, Ahangar C (2004) The influence of heavy metals on the development and activity of soil microorganisms. Int J Plants Anim Environ Sci 4:4

    Google Scholar 

  • Teng Y, Wang X et al (2015) Rhizobia and their biopartners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Thayer JS (2002) Review: biological methylation of less-studied elements. John Wiley & Sons, Ltd. 24. Appl Organometalic Chem 16:677–691. https://doi.org/10.1002/aoc.375

  • Tiwari S, Lata C, Singh C et al (2017) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genomics 18:469–482. https://doi.org/10.2174/1389202918666170605083319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trasar-Cepeda C, Leirós MC, Seoane S, Gil-Sotres F (2000) Limitations of soil enzymes as indicators of soil pollution. Soil Biol Biochem 32:1867–1875

    Article  CAS  Google Scholar 

  • Turgay OC, Gormez A, Bilen S (2012) Isolation and characterization of metal resistant-tolerant rhizosphere bacteria from the serpentine soils in Turkey. Environ Monit Assess 184:515–526

    Article  CAS  PubMed  Google Scholar 

  • Van Beelen P (2004) A review on the application of microbial toxicity tests for deriving sediment quality guidelines. Chemosphere 53(8):795–808 https://doi.org/10.1016/S0045-6535(03)00716-1

  • Violante A, Cozzolino V, Perelomov L et al (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10:268–292

    Article  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Guo J, Liu R (2001) Biosorption of heavy metals by bacteria isolated from activated sludge. Appl Biochem Biotechnol 91:171–184

    Google Scholar 

  • Wang F, Yao J, Si Y, Chen H, Russel M, Chen K, Qian Y, Zaray G, Bramanti E (2010) Short-time effect of heavy metals upon microbial community activity. J Hazard Mater 173:510–516

    Article  CAS  PubMed  Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical process for treatment of contamination. FEMS Microbiol Rev 20:503–516

    Article  CAS  PubMed  Google Scholar 

  • Wilke BM, Mai M, Gattinger A et al (2005) Effects of fresh and aged copper contamination on soil microorganisms. J Plant Nutr Soil Sci 168:668–675

    Article  CAS  Google Scholar 

  • Wu D, Wang Q, Assary R et al (2011) A computational approach to design and evaluate enzymatic reaction pathways: application to 1-butanol production from pyruvate. J Chem Inf Model 51(7):1634

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Jibiao F, Weixi Z et al (2016) Effect of heavy metals pollution on soil microbial diversity and Bermudagrass genetic variation. Front Plant Sci 7:755. https://doi.org/10.3389/pls.2016,00755

  • Yang R, Tang J, Chen X et al (2007) Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils. Appl Soil Ecol 37:240–246

    Article  Google Scholar 

  • Zaborowska M, Wyszkowska J, Kucharski J (2006) Microbial activity in zinc contaminated soil of different pH. Pol J Environ Stud 15(2a):569–574

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Inobeme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inobeme, A. (2021). Effect of Heavy Metals on Activities of Soil Microorganism. In: Adetunji, C.O., Panpatte, D.G., Jhala, Y.K. (eds) Microbial Rejuvenation of Polluted Environment. Microorganisms for Sustainability, vol 27. Springer, Singapore. https://doi.org/10.1007/978-981-15-7459-7_6

Download citation

Publish with us

Policies and ethics