Skip to main content

Characteristic Classes of Orbit Stratifications, the Axiomatic Approach

  • Conference paper
  • First Online:
Schubert Calculus and Its Applications in Combinatorics and Representation Theory (ICTSC 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 332))

Included in the following conference series:

Abstract

Consider a complex algebraic group G acting on a smooth variety M with finitely many orbits, and let \(\Omega \) be an orbit. The following three invariants of \(\Omega \subset M\) can be characterized axiomatically: (1) the equivariant fundamental class \([\overline{\Omega }, M]\in H^*_G(M)\), (2) the equivariant Chern–Schwartz–MacPherson class \({{\,\mathrm{c^{sm}}\,}}(\Omega , M)\in H^*_G(M)\), and (3) the equivariant motivic Chern class \({{\,\mathrm{mC}\,}}(\Omega , M) \in K_G(M)[y]\). The axioms for Chern–Schwartz–MacPherson and motivic Chern classes are motivated by the axioms for cohomological and K-theoretic stable envelopes of Okounkov and his coauthors. For M a flag variety and \(\Omega \) a Schubert cell—an orbit of the Borel group acting—this implies that CSM and MC classes coincide with the weight functions studied by Rimányi–Tarasov–Varchenko. In this paper we review the general theory and illustrate it with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since \(u^k=[\mathcal O_{\mathbb {P}^{n-1-k}}]\in K(\mathbb {P}^{n-1})\) thus \(p_*(u^k)=\chi (\mathbb {P}^{n-1-k};\mathcal O)=1\).

  2. 2.

    This idea appeared already in an early version of [26].

References

  1. Aluffi, P.: Chern classes of birational varieties. Int. Math. Res. Not. 63, 3367–3377 (2004)

    Article  MathSciNet  Google Scholar 

  2. Aluffi, P., Mihalcea, L.C.: Chern-Schwartz-MacPherson classes for Schubert cells in flag manifolds. Compositio Mathematica 152(12), 2603–2625 (2016)

    Article  MathSciNet  Google Scholar 

  3. Aluffi, P., Mihalcea, L.C., Schürmann, J., Su, C.: Shadows of characteristic cycles, Verma modules, and positivity of Chern-Schwartz-MacPherson classes of Schubert cells. arXiv:1709.08697

  4. Aluffi, P., Mihalcea, L.C., Schürmann, J., Su, C.: Motivic chern classes of schubert cells, hecke algebras, and applications to casselman’s problem. arXiv:1902.10101

  5. Anderson, D., Griffeth, S., Miller, E.: Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces. J. Eur. Math. Soc. 13(1), 57–84 (2011)

    Article  MathSciNet  Google Scholar 

  6. Atiyah, M.F., Bott, R.: The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308(1505), 523–615 (1983)

    Google Scholar 

  7. Białynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98(2), 480–497 (1973)

    Google Scholar 

  8. Borel, A.: Seminar on transformation groups, (with contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais). Annals of Mathematics Studies, No. 46, Princeton, UP (1960)

    Google Scholar 

  9. Bott, R.: An introduction to equivariant cohomology. Quantum field theory: perspective and prospective (Les Houches, 1998), pp. 35–56, NATO Science Institutes Series C: Mathematical and Physical Sciences, vol. 530. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  10. Brasselet, J.-P., Schürmann, J., Yokura, S.: Hirzebruch classes and motivic Chern classes for singular spaces. J. Topol. Anal. 2(1), 1–55 (2010)

    Article  MathSciNet  Google Scholar 

  11. Cappell, S.E., Maxim, L.G., Schürmann, J., Shaneson, J.L.: Equivariant characteristic classes of singular complex algebraic varieties. Commun. Pure Appl. Math. 65(12), 1722–1769 (2012)

    Article  MathSciNet  Google Scholar 

  12. Carrell, J.B.: Torus actions and cohomology. Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, pp. 83–158, Encyclopaedia of Mathematical Sciences, vol. 131, Invariant Theory and Algebraic Transformation Groups, II. Springer, Berlin (2002)

    Google Scholar 

  13. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Modern Birkhäuser Classics. Birkhäuser, Boston (1997); 2nd edn. (2009)

    Google Scholar 

  14. Fehér, L.M., Némethi, A., Rimányi, R.: Equivariant classes of matroid realization spaces. Comment. Math. Helv. 87, 861–889 (2012)

    Article  MathSciNet  Google Scholar 

  15. Fehér, L., Rimányi, R.: Schur and Schubert polynomials as Thom polynomials–cohomology of moduli spaces. Cent. European J. Math. 4, 418–434 (2003)

    Article  MathSciNet  Google Scholar 

  16. Fehér, L., Rimányi, R.: Calculation of Thom polynomials and other cohomological obstructions for group actions In: Real and Complex Singularities (Sao Carlos 2000) Gaffney, T., Ruas, M. (eds.) Contemp. Math. #354, pp. 69–93. AMS (2004)

    Google Scholar 

  17. Fehér, L., Rimányi, R.: Classes of degeneracy loci for quivers–the Thom polynomial point of view. Duke Math. J. 114(2), 193–213 (2002)

    Article  MathSciNet  Google Scholar 

  18. Fehér, L.M., Rimányi, R.: Chern-Schwartz-MacPherson classes of degeneracy loci. Geom. Topol. 22, 3575–3622 (2018)

    Article  MathSciNet  Google Scholar 

  19. Fehér, L.M., Rimányi, R., Weber, A.: Motivic Chern classes and K-theoretic stable envelopes. arXiv:1802.01503

  20. Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83 (1998)

    Article  MathSciNet  Google Scholar 

  21. Huh, J.: Combinatorial applications of the Hodge-Riemann relations. In: Proceedings of the International Congress of Mathematicians 2018, Rio de Janeiro, vol. 3, pp. 3079–3098

    Google Scholar 

  22. MacPherson, R.: Chern classes for singular algebraic varieties. Ann. Math. 100, 421–432 (1974)

    Article  MathSciNet  Google Scholar 

  23. Maulik, D., Okounkov, A.: Quantum Groups and Quantum Cohomology, Astérisque, vol. 408. Société Mathématique de France (2019). arXiv:1211.1287

  24. Mikosz, M., Weber, A.: Equivariant Hirzebruch class for quadratic cones via degenerations. J. Singul. 12, 131–140 (2015)

    Google Scholar 

  25. Ohmoto, T.: Equivariant Chern classes of singular algebraic varieties with group actions. Math. Proc. Cambridge Phil. Soc. 140, 115–134 (2006)

    Article  MathSciNet  Google Scholar 

  26. Ohmoto, T.: Singularities of maps and characteristic classes. Adv. Stud. Pure Math. 68(Math. Soc. Japan), 171–245 (2016)

    Google Scholar 

  27. Okounkov, A.: Lectures on K-theoretic computations in enumerative geometry. Geometry of moduli spaces and representation theory, pp. 251–380. IAS/Park City Mathematics Series, vol. 24. AMS (2017)

    Google Scholar 

  28. Promtapan, S., Rimányi, R.: Characteristic classes of symmetric and skew-symmetric degeneracy loci. arXiv:1908.07373

  29. Rimányi, R.: Thom polynomials, symmetries and incidences of singularities. Invent. Math. 143(3), 499–521 (2001)

    Article  MathSciNet  Google Scholar 

  30. Rimányi, R.: Motivic characteristic classes in cohomological Hall algebras. To appear in Adv. Math. (2019)

    Google Scholar 

  31. Rimányi, R., Tarasov, V., Varchenko, A.: Partial flag varieties, stable envelopes and weight functions. Quantum Topol. 6(2), 333–364 (2015)

    Article  MathSciNet  Google Scholar 

  32. Rimányi, R., Tarasov, V., Varchenko, A.: Trigonometric weight functions as K-theoretic stable envelope maps for the cotangent bundle of a flag variety. J. Geom. Phys. 94, 81–119 (2015)

    Article  MathSciNet  Google Scholar 

  33. Rimányi, R., Tarasov, V., Varchenko, A.: Elliptic and K-theoretic stable envelopes and Newton polytopes. Selecta Math. 25, 16 (2019)

    Article  MathSciNet  Google Scholar 

  34. Rimányi, R., Varchenko, A.: Equivariant Chern-Schwartz-MacPherson classes in partial flag varieties: interpolation and formulae. In: Schubert Varieties, Equivariant Cohomology and Characteristic Classes—IMPANGA 15, pp. 225–235. EMS (2018)

    Google Scholar 

  35. Rimányi, R., Weber, A.: Elliptic classes of Schubert cells via Bott-Samelson resolution. arXiv:1904.10852

  36. Segal, G.: Equivariant K-theory. Institut des Hautes Études Scientifiques Publications Math. No. 34, pp. 129–151 (1968)

    Google Scholar 

  37. Tarasov, V., Varchenko, A.: Combinatorial formulae for nested Bethe vectors. SIGMA 9(048), 1–28 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Uma, V.: Equivariant K-theory of flag varieties revisited and related results. Colloq. Math. 132(2), 151–175 (2013)

    Article  MathSciNet  Google Scholar 

  39. Weber, A.: Equivariant Chern classes and localization theorem. J. Singul. 5, 153–176 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Weber, A.: Equivariant Hirzebruch class for singular varieties. Selecta Math. (N.S.) 22(3), 1413–1454 (2016)

    Google Scholar 

  41. Weber, A.: Hirzebruch class and Białynicki-Birula decomposition. Transform. Groups 22(2), 537–557 (2017)

    Article  MathSciNet  Google Scholar 

  42. Zielenkiewicz, M.: The Gysin homomorphism for homogeneous spaces via residues, Ph.D. Thesis (2017). arXiv:1702.04123

Download references

Acknowledgements

L.F. is supported by NKFI grants K 112735 and KKP 126683. R.R. is supported by the Simon Foundation grant 523882. A.W. is supported by NCN grants 2013/08/A/ST1/00804 and 2016/23/G/ST1/04282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richárd Rimányi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fehér, L.M., Rimányi, R., Weber, A. (2020). Characteristic Classes of Orbit Stratifications, the Axiomatic Approach. In: Hu, J., Li, C., Mihalcea, L.C. (eds) Schubert Calculus and Its Applications in Combinatorics and Representation Theory. ICTSC 2017. Springer Proceedings in Mathematics & Statistics, vol 332. Springer, Singapore. https://doi.org/10.1007/978-981-15-7451-1_9

Download citation

Publish with us

Policies and ethics