Skip to main content

Summary of Experimental Results

  • Chapter
  • First Online:
Microbial Communication
  • 286 Accesses

Abstract

In this chapter, we are accumulating significant experimental results of the quorum sensing mechanism over the last few decades. We summarize important experimental observations of several talking bacteria such as Vibrio fischeri, Pseudomonas aeruginosa, Agrobacterium tumefaciens, Erwinia carotovora, Vibrio harveyi, Vibrio anguillarum, Yersinia enterocolitica, Yersinia pseudotuberculosis, Aeromonas hydrophila, Aeromonas salmonicida, Serratia liquefaciens, Salmonella typhimurium, Ralstonia solanacearum, Rhizobium etli, Rhodobacter sphaeroides, Rhizobium leguminosarum, Burkholderia cepacia, Chromobacterium violaceum, Erwinia chrysanthemi, Escherichia coli, Vibrio cholerae, Streptococcus pneumonic, Bacillus subtilis and Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaefer AL, Hanzelka BL, Eberhard A, Greenberg EP (1996) Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J Bacteriol 178(10):2897–2901

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Schaefer AL, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1996) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci. USA 93(18):9505

    Google Scholar 

  3. Lupp C, Ruby EG (2005) Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J Bacteriol 187(11):3620–3629

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Hanzelka BL, Greenberg EP (1996) Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionines the amino acid substrate for autoinducer synthesis. J Bacteriol 178(17):5291–5294

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Geske GD, O’Neill JC, Blackwell HE (2007) N-phenylacetanoyl-L-homoserine lactones can strongly antagonize or superagonize quorum sensing in Vibrio fischeri. ACS Chem Biol 2(5):315–319

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Studer SV, Mandel MJ, Ruby EG (2008) AinS quorum sensing regulates the Vibrio fischeri acetate switch. J Bacteriol 190(17):5915–5923

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Qin N, Callahan SM, Dunlap PV, Stevens AM (2007) Analysis of LuxR regulon gene expression during quorum sensing in Vibrio fischeri. J Bacteriol 189(11):4127–4134

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Urbanowski ML, Lostroh CP, Greenberg EP (2004) Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. J Bacteriol 186(3):631–637

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Antunes LCM, Schaefer AL, Ferreira RB, Qin N, Stevens AM, Ruby EG, Greenberg EP (2007) Transcriptome analysis of the Vibrio fischeri LuxR-LuxI regulon. J Bacteriol 189(22):8387–8391

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Castang S, Chantegrel B, Deshayes C, Dolmazon R, Gouet P, Haser R, Reverchon S, Nasser W, Hugouvieux-Cotte-Pattat N, Doutheau A (2004) N-Sulfonyl homoserine lactones as antagonists of bacterial quorum sensing. Bioorg Med Chem Lett 14(20):5145–5149

    PubMed  CAS  Google Scholar 

  11. Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179(10):3127–3132

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci 96(24):13904–13909

    PubMed  CAS  Google Scholar 

  13. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179(18):5756–5767

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185(7):2080–2095

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP (2001) QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci 98(5):2752–2757

    PubMed  CAS  Google Scholar 

  16. Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12(2):182–191

    PubMed  CAS  Google Scholar 

  17. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407(6805):762

    PubMed  CAS  Google Scholar 

  18. Tateda K, Comte R, Pechere JC, Köhler T, Yamaguchi K, Van Delden C (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45(6):1930–1933

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61(5):1308–1321

    PubMed  CAS  Google Scholar 

  20. Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13(1):27–33

    PubMed  CAS  Google Scholar 

  21. Schuster M, Hawkins AC, Harwood CS, Greenberg EP (2004) The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 51(4):973–985

    PubMed  CAS  Google Scholar 

  22. Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17(2):333–343

    PubMed  CAS  Google Scholar 

  23. O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci 110(44):17981–17986

    PubMed  Google Scholar 

  24. Chen R, Déziel E, Groleau MC, Schaefer AL, Greenberg EP (2019) Social cheating in a Pseudomonas aeruginosa quorum-sensing variant. Proc Natl Acad Sci 116(14):7021–7026

    PubMed  CAS  Google Scholar 

  25. Wang M, Schaefer AL, Dandekar AA, Greenberg EP (2015) Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc Natl Acad Sci 112(7):2187–2191

    PubMed  CAS  Google Scholar 

  26. Bodelón G, Montes-García V, López-Puente V, Hill EH, Hamon C, Sanz-Ortiz MN, Rodal-Cedeira S, Costas C, Celiksoy S, Pérez-Juste I, Scarabelli L (2016) Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat Mater 15(11):1203

    PubMed  PubMed Central  Google Scholar 

  27. Maura D, Hazan R, Kitao T, Ballok AE, Rahme LG (2016) Evidence for direct control of virulence and defense gene circuits by the Pseudomonas aeruginosa quorum sensing regulator, MvfR. Sci Rep 6:34083

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Rampioni G, Falcone M, Heeb S, Frangipani E, Fletcher MP, Dubern JF, Visca P, Leoni L, Cámara M, Williams P (2016) Unravelling the genome-wide contributions of specific 2-alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa. PLoS Pathog 12(11):e1006029

    Google Scholar 

  29. Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB (2015) Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep 5:13719

    PubMed  PubMed Central  Google Scholar 

  30. Darch SE, Simoska O, Fitzpatrick M, Barraza JP, Stevenson KJ, Bonnecaze RT, Shear JB, Whiteley M (2018) Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model. Proc Natl Acad Sci 115(18):4779–4784

    PubMed  CAS  Google Scholar 

  31. Zhang HB, Wang LH, Zhang LH (2002) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci 99(7):4638–4643

    PubMed  CAS  Google Scholar 

  32. Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci 103(19):7460–7464

    PubMed  CAS  Google Scholar 

  33. An D, Danhorn T, Fuqua C, Parsek MR (2006) Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proc Natl Acad Sci 103(10):3828–3833

    PubMed  CAS  Google Scholar 

  34. Zhu J, Winans SC (1998) Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein. Mol Microbiol 27(2):289–297

    PubMed  CAS  Google Scholar 

  35. Zhu J, Chai Y, Zhong Z, Li S, Winans SC (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69(11):6949–6953

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Liu D, Thomas PW, Momb J, Hoang QQ, Petsko GA, Ringe D, Fast W (2007) Structure and specificity of a quorum-quenching lactonase (AiiB) from Agrobacterium tumefaciens. Biochemistry 46(42):11789–11799

    PubMed  CAS  Google Scholar 

  37. El Sahili A, Li SZ, Lang J, Virus C, Planamente S, Ahmar M, Guimaraes BG, Aumont-Nicaise M, Vigouroux A, Soulère L, Reader J (2015) A pyranose-2-phosphate motif is responsible for both antibiotic import and quorum-sensing regulation in Agrobacterium tumefaciens. PLoS Pathog 11(8):e1005071

    Google Scholar 

  38. Dessaux Y, Faure D (2018) Quorum sensing and quorum quenching in Agrobacterium: a “go/no go system”? Genes 9(4):210

    PubMed Central  Google Scholar 

  39. Zhang B, Guo B, Bai Y, Lu H, Dong Y (2018) Synthesis and biological evaluation of azamacrolide comprising the triazole moiety as quorum sensing inhibitors. Molecules 23(5):1086

    PubMed Central  Google Scholar 

  40. McCarthy RR, Yu M, Eilers K, Wang YC, Lai EM, Filloux A (2019) Cyclic di-GMP inactivates T6SS and T4SS activity in Agrobacterium tumefaciens. Mol Microbiol 112(2):632–648

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Byers JT, Lucas C, Salmond GP, Welch M (2002) Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol 184(4):1163–1171

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Burr T, Barnard AM, Corbett MJ, Pemberton CL, Simpson NJ, Salmond GP (2006) Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. Mol Microbiol 59(1):113–125

    PubMed  CAS  Google Scholar 

  43. Sjöblom S, Brader G, Koch G, Palva ET (2006) Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora. Mol Microbiol 60(6):1474–1489

    PubMed  Google Scholar 

  44. Zhang Y, Kong J, Xie Y, Guo Y, Cheng Y, Qian H, Yao W (2018) Essential oil components inhibit biofilm formation in Erwinia carotovora and Pseudomonas fluorescens via anti-quorum sensing activity. LWT 92:133–139

    CAS  Google Scholar 

  45. Zhang Y, Kong J, Xie Y, Guo Y, Yu H, Cheng Y, Qian H, Shi R, Yao W (2019) Quorum-sensing inhibition by hexanal in biofilms formed by Erwinia carotovora and Pseudomonas fluorescens. LWT 109:145–152

    CAS  Google Scholar 

  46. Surette MG, Miller MB, Bassler BL (1999) Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci 96(4):1639–1644

    PubMed  CAS  Google Scholar 

  47. Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186(20):6902–6914

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Mok KC, Wingreen NS, Bassler BL (2003) Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO J 22(4):870–881

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Henke JM, Bassler BL (2004) Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol 186(12):3794–3805

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Lilley BN, Bassler BL (2000) Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Mol Microbiol 36(4):940–954

    PubMed  CAS  Google Scholar 

  51. Waters CM, Bassler BL (2006) The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev 20(19):2754–2767

    PubMed  PubMed Central  CAS  Google Scholar 

  52. van Kessel JC, Rutherford ST, Cong JP, Quinodoz S, Healy J, Bassler BL (2015) Quorum sensing regulates the osmotic stress response in Vibrio harveyi. J Bacteriol 197(1):73–80

    PubMed  Google Scholar 

  53. Bagert JD, van Kessel JC, Sweredoski MJ, Feng L, Hess S, Bassler BL, Tirrell DA (2016) Time-resolved proteomic analysis of quorum sensing in Vibrio harveyi. Chem Sci 7(3):1797–1806

    PubMed  CAS  Google Scholar 

  54. McRose DL, Baars O, Seyedsayamdost MR, Morel FM (2018) Quorum sensing and iron regulate a two-for-one siderophore gene cluster in Vibrio harveyi. Proc Natl Acad Sci 115(29):7581–7586

    PubMed  CAS  Google Scholar 

  55. Salini R, Santhakumari S, Ravi AV, Pandian SK (2019) Synergistic antibiofilm efficacy of undecanoic acid and auxins against quorum sensing mediated biofilm formation of luminescent Vibrio harveyi. Aquaculture 498:162–170

    CAS  Google Scholar 

  56. Milton DL, Hardman A, Camara M, Chhabra SR, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-L-homoserine lactone. J Bacteriol 179(9):3004–3012

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Weber B, Hasic M, Chen C, Wai SN, Milton DL (2009) Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol 11(12):3018–3028

    PubMed  CAS  Google Scholar 

  58. Weber B, Croxatto A, Chen C, Milton DL (2008). RpoS induces expression of the Vibrio anguillarum quorum-sensing regulator VanT. Microbiology 154(3):767–780

    PubMed  CAS  Google Scholar 

  59. Croxatto A, Pride J, Hardman A, Williams P, Cámara M, Milton DL (2004) A distinctive dual-channel quorum-sensing system operates in Vibrio anguillarum. Mol Microbiol 52(6):1677–1689

    PubMed  CAS  Google Scholar 

  60. Tan D, Svenningsen SL, Middelboe M (2015) Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum. MBio 6(3):e00627-15

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Atkinson S, Chang CY, Sockett RE, Cámara M, Williams P (2006) Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. J Bacteriol 188(4):1451–1461

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Truchado P, Giménez Bastida JA, Larrosa M, Castro-Ibáñez I, Espín JC, Tomás Barberán FA, García-Conesa MT, Allende A (2012) Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. J Agric Food Chem 60(36):8885–8894

    PubMed  CAS  Google Scholar 

  63. Giménez-Bastida JA, Truchado P, Larrosa M, Espín JC, Tomás-Barberán FA, Allende A, García-Conesa MT (2012) Urolithins, ellagitannin metabolites produced by colon microbiota, inhibit quorum sensing in Yersinia enterocolitica: phenotypic response and associated molecular changes. Food Chem 132(3):1465–1474

    PubMed  Google Scholar 

  64. Throup JP, Camara M, Briggs GS, Winson MK, Chhabra SR, Bycroft BW, Williams P, Stewart GS (1995) Characterisation of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two N-acylhomoserine lactone signal molecules. Mol Microbiol 17(2):345–356

    PubMed  CAS  Google Scholar 

  65. Ng YK, Grasso M, Wright V, Garcia V, Williams P, Atkinson S (2018) The quorum sensing system of Yersinia enterocolitica 8081 regulates swimming motility, host cell attachment, and virulence plasmid maintenance. Genes 9(6):307

    PubMed Central  Google Scholar 

  66. Atkinson S, Throup JP, Stewart GS, Williams P (1999) A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 33(6):1267–1277

    PubMed  CAS  Google Scholar 

  67. Atkinson S, Chang CY, Patrick HL, Buckley CM, Wang Y, Sockett RE, Cámara M, Williams P (2008) Functional interplay between the Yersinia pseudotuberculosis YpsRI and YtbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA. Mol Microbiol 69(1):137–151

    PubMed  CAS  Google Scholar 

  68. Zhang W, Xu S, Li J, Shen X, Wang Y, Yuan Z (2011) Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol 193(5):351–363

    PubMed  CAS  Google Scholar 

  69. Ortori CA, Atkinson S, Chhabra SR, Cámara M, Williams P, Barrett DA (2007) Comprehensive profiling of N-acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole–linear ion trap mass spectrometry. Anal. Bioanal. Chem 387(2):497–511

    PubMed  CAS  Google Scholar 

  70. Slater A (2018) Unraveling the regulatory relationship between quorum sensing and the type III secretion system in Yersinia pseudotuberculosis (Doctoral dissertation, University of Nottingham)

    Google Scholar 

  71. Swift S, Karlyshev AV, Fish L, Durant EL, Winson MK, Chhabra SR, Williams P, Macintyre S, Stewart GS (1997) Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179(17):5271–5281

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Swift S, Lynch MJ, Fish L, Kirke DF, Tomás JM, Stewart GS, Williams P (1999) Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infect Immun 67(10):5192–5199

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Lynch MJ, Swift S, Kirke DF, Keevil CW, Dodd CE, Williams P (2002) The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ Microbiol 4(1):18–28

    PubMed  CAS  Google Scholar 

  74. Ponnusamy K, Paul D, Kweon JH (2009) Inhibition of quorum sensing mechanism and Aeromonas hydrophila biofilm formation by vanillin. Environ Eng Sci 26(8):1359–1363

    CAS  Google Scholar 

  75. Mizan MFR, Jahid IK, Park SY, Silva JL, Kim TJ, Myoung J, Ha SD (2018) Effects of temperature on biofilm formation and quorum sensing of Aeromonas hydrophila. Ital J Food Sci 30:456–466

    CAS  Google Scholar 

  76. Natrah FMI, Alam MI, Pawar S, Harzevili AS, Nevejan N, Boon N, Sorgeloos P, Bossier P, Defoirdt T (2012) The impact of quorum sensing on the virulence of Aeromonas hydrophila and Aeromonas salmonicida towards burbot (Lota lota L.) larvae. Vet Microbiol 159(1–2):77–82

    PubMed  CAS  Google Scholar 

  77. Schwenteit J, Gram L, Nielsen KF, Fridjonsson OH, Bornscheuer UT, Givskov M, Gudmundsdottir BK (2011) Quorum sensing in Aeromonas salmonicida subsp. achromogenes and the effect of the autoinducer synthase AsaI on bacterial virulence. Vet Microbiol 147(3–4):389–397

    PubMed  CAS  Google Scholar 

  78. Rasch M, Kastbjerg VG, Bruhn JB, Dalsgaard I, Givskov M, Gram L (2007) Quorum sensing signals are produced by Aeromonas salmonicida and quorum sensing inhibitors can reduce production of a potential virulence factor. Dis Aquat Org 78(2):105–113

    PubMed  Google Scholar 

  79. Liu L, Yan Y, Feng L, Zhu J (2018) Quorum sensing asaI mutants affect spoilage phenotypes, motility, and biofilm formation in a marine fish isolate of Aeromonas salmonicida. Food Microbiol 76:40–51

    PubMed  CAS  Google Scholar 

  80. Rasmussen TB, Manefield M, Andersen JB, Eberl L, Anthoni U, Christophersen C, Steinberg P, Kjelleberg S, Givskov M (2000). How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology 146(12):3237–3244

    PubMed  CAS  Google Scholar 

  81. Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S (2004) Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186(3):692–698

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Eberl L, Winson MK, Sternberg C, Stewart GS, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M (1996) Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20(1):127–136

    PubMed  CAS  Google Scholar 

  83. Remuzgo-Martínez, S, Lázaro-Díez M, Mayer C, Aranzamendi-Zaldumbide M, Padilla D, Calvo J, Marco F, Martínez-Martínez L, Icardo JM, Otero A, Ramos-Vivas J (2015) Biofilm formation and quorum-sensing-molecule production by clinical isolates of Serratia liquefaciens. Appl Environ Microbiol 81(10):3306–3315

    PubMed  PubMed Central  Google Scholar 

  84. Araz K, Patel S, Khajehdehi N, Bjerkan Wade C, Thomas J, Krajnyk I (2018) Interactions between lemongrass and lavender essential oils in combination with ampicillin influencing antibacterial activity on Sporosarcina ureae and Serratia liquefaciens. WURJ Health Nat Sci 9(1):2

    Google Scholar 

  85. Surette MG, Bassler BL (1998) Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci 95(12):7046–7050

    PubMed  CAS  Google Scholar 

  86. Miller ST, Xavier KB, Campagna SR, Taga ME, Semmelhack MF, Bassler BL, Hughson FM (2004) Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell 15(5):677–687

    PubMed  CAS  Google Scholar 

  87. Almasoud A, Hettiarachchy N, Rayaprolu S, Babu D, Kwon YM, Mauromoustakos A (2016) Inhibitory effects of lactic and malic organic acids on autoinducer type 2 (AI-2) quorum sensing of Escherichia coli O157: H7 and Salmonella typhimurium. LWT-Food Sci Technol 66:560–56

    CAS  Google Scholar 

  88. Liao H, Zhong X, Xu L, Ma Q, Wang Y, Cai Y, Guo X (2019) Quorum-sensing systems trigger catalase expression to reverse the oxyR deletion-mediated VBNC state in Salmonella typhimurium. Res Microbiol 170(2):65–73

    PubMed  CAS  Google Scholar 

  89. Hawkins JL, Uknalis J, Oscar TP, Schwarz JG, Vimini B, Parveen S (2019) The effect of previous life cycle phase on the growth kinetics, morphology, and antibiotic resistance of Salmonella typhimurium DT104 in brain heart infusion and ground chicken extract. Front Microbiol 10:1043

    PubMed  PubMed Central  Google Scholar 

  90. Flavier AB, Clough SJ, Schell MA, Denny TP (1997) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26(2):251–259

    PubMed  CAS  Google Scholar 

  91. Chen CN, Chen CJ, Liao CT, Lee CY (2009) A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity. BMC Microbiol 9(1):89

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Kai K, Ohnishi H, Shimatani M, Ishikawa S, Mori Y, Kiba A, Ohnishi K, Tabuchi M, Hikichi Y (2015) Methyl 3-hydroxymyristate, a diffusible signal mediating phc quorum sensing in Ralstonia solanacearum. ChemBioChem 16(16):2309–2318

    PubMed  CAS  Google Scholar 

  93. Kumar JS, Umesha S, Prasad KS, Niranjana P (2016) Detection of quorum sensing molecules and biofilm formation in Ralstonia solanacearum. Curr Microbiol 72(3):297–305

    PubMed  CAS  Google Scholar 

  94. Genin S, Brito B, Denny TP, Boucher C (2005) Control of the Ralstonia solanacearum Type III secretion system (Hrp) genes by the global virulence regulator PhcA. FEBS Lett 579(10):2077–2081

    PubMed  CAS  Google Scholar 

  95. Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277(1):462–468

    PubMed  CAS  Google Scholar 

  96. Tun-Garrido C, Bustos P, Gonzááez V, Brom S (2003) Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 185(5):1681–1692

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Daniels R, Reynaert S, Hoekstra H, Verreth C, Janssens J, Braeken K, Fauvart M, Beullens S, Heusdens C, Lambrichts I, De Vos DE (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci 103(40):14965–14970

    PubMed  CAS  Google Scholar 

  98. Zheng H, Mao Y, Zhu Q, Ling J, Zhang N, Naseer N, Zhong Z, Zhu J (2015) The quorum sensing regulator CinR hierarchically regulates two other quorum sensing pathways in ligand-dependent and-independent fashions in Rhizobium etli. J Bacteriol 197(9):1573–1581

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Dixit S, Dubey RC, Maheshwari DK, Seth PK, Bajpai VK (2017) Roles of quorum sensing molecules from Rhizobium etli RT1 in bacterial motility and biofilm formation. Brazil J Microbiol 48(4):815–821

    CAS  Google Scholar 

  100. Puskas A, Greenberg EÁ, Kaplan S, Schaefer AÁ (1997) A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J Bacteriol 179(23):7530–7537

    PubMed  PubMed Central  CAS  Google Scholar 

  101. Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dyé F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37(1):81–97

    PubMed  CAS  Google Scholar 

  102. Wisniewski-Dye F, Jones J, Chhabra SR, Downie JA (2002) raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum. J Bacteriol 184(6):1597–1606

    PubMed  PubMed Central  CAS  Google Scholar 

  103. McAnulla C, Edwards A, Sanchez-Contreras M, Sawers RG, Downie JA (2007) Quorum-sensing-regulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae. Microbiology 153(7):2074–2082

    PubMed  CAS  Google Scholar 

  104. Edwards A, Frederix M, Wisniewski-Dyé F, Jones J, Zorreguieta A, Downie JA (2009) The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI. J Bacteriol 191(9):3059–3067

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Blosser-Middleton RS, Gray KM (2001) Multiple N-acyl homoserine lactone signals of Rhizobium leguminosarum are synthesized in a distinct temporal pattern. J Bacteriol 183(23):6771–6777

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181(3):748–756

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147(9):2517–2528

    PubMed  CAS  Google Scholar 

  108. Köthe M, Antl M, Huber B, Stoecker K, Ebrecht D, Steinmetz I, Eberl L (2003) Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cellular Microbiol 5(5):343–351

    Google Scholar 

  109. Deng Y, Wu JE, Eberl L, Zhang LH (2010) Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex. Appl Environ Microbiol 76(14):4675–4683

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Coulon PM, Déziel E (2019) Potential of the Burkholderia cepacia complex to produce 4-hydroxy-3-methyl-2-alkyquinolines. Front Cell Infect Microbiol 9:33

    PubMed  PubMed Central  CAS  Google Scholar 

  111. Chernin LS, Winson MK, Thompson JM, Haran S, Bycroft BW, Chet I,Williams P, Stewart GS (1998) Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J Bacteriol 180(17):4435–4441

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Stauff DL, Bassler BL (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. J Bacteriol 193(15):3871–3878

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Burt SA, Ojo-Fakunle VT, Woertman J, Veldhuizen EJ (2014) The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One 9(4):e93414

    PubMed  PubMed Central  Google Scholar 

  114. Zhu H, He CC, Chu QH (2011) Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Lett Appl Microbiol 52(3):269–274

    PubMed  CAS  Google Scholar 

  115. Evans KC, Benomar S, Camuy-Vélez LA, Nasseri EB, Wang X, Neuenswander B, Chandler JR (2018) Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum. ISME J 12(5):1263

    Google Scholar 

  116. Reverchon S, Bouillant ML, Salmond G, Nasser W (1998) Integration of the quorum-sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemi. Mol Microbiol 29(6):1407–1418

    PubMed  CAS  Google Scholar 

  117. Hussain MB, Zhang HB, Xu JL, Liu Q, Jiang Z, Zhang LH (2008) The acyl-homoserine lactone-type quorum-sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae. J Bacteriol 190(3):1045–1053

    PubMed  CAS  Google Scholar 

  118. Nasser W, Bouillant ML, Salmond G, Reverchon S (1998) Characterization of the Erwinia chrysanthemi expI–expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29(6):1391–1405

    PubMed  CAS  Google Scholar 

  119. Castang S, Reverchon S, Gouet P, Nasser W (2006) Direct evidence for the modulation of the activity of the Erwinia chrysanthemi quorum-sensing regulator ExpR by acylhomoserine lactone pheromone. J Biol Chem 281(40):29972–29987

    PubMed  CAS  Google Scholar 

  120. Hugouvieux-Cotte-Pattat N, Condemine G, Nasser W, Reverchon S (1996) Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol 50(1):213–257

    PubMed  CAS  Google Scholar 

  121. Barrios AFG, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188(1):305–316

    CAS  Google Scholar 

  122. Sperandio V, Torres AG, Girón JA, Kaper JB (2001) Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157: H7. J Bacteriol 183(17):5187–5197

    PubMed  PubMed Central  CAS  Google Scholar 

  123. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318(5850):652–655

    PubMed  CAS  Google Scholar 

  124. Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB (2015) Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep 10(11):1861–1871

    PubMed  CAS  Google Scholar 

  125. Pasupuleti S, Sule N, Manson MD, Jayaraman A (2018) Conversion of norepinephrine to 3, 4-dihdroxymandelic acid in Escherichia coli requires the QseBC quorum-sensing system and the fear transcription factor. J Bacteriol 200(1):e00564-17

    PubMed  CAS  Google Scholar 

  126. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci 99(5):3129–3134

    PubMed  CAS  Google Scholar 

  127. Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110(3):303–314

    PubMed  CAS  Google Scholar 

  128. Lenz DH, Miller MB, Zhu J, Kulkarni RV, Bassler BL (2005) CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol Microbiol 58(4):1186–1202

    PubMed  CAS  Google Scholar 

  129. Lenz DH, Bassler BL (2007) The small nucleoid protein Fis is involved in Vibrio cholerae quorum sensing. Mol Microbiol 63(3):859–871

    PubMed  CAS  Google Scholar 

  130. Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50(1):101–104

    PubMed  CAS  Google Scholar 

  131. Alloing G, Martin B, Granadel C, Claverys JP (1998) Development of competence in Streptococcus pneumoniae: pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol Microbiol 29(1):75–83

    PubMed  CAS  Google Scholar 

  132. Luo P, Li H, Morrison DA (2003) ComX is a unique link between multiple quorum sensing outputs and competence in Streptococcus pneumoniae. Mol Microbiol 50(2):623–633

    PubMed  CAS  Google Scholar 

  133. Knutsen E, Ween O, Håvarstein LS (2004) Two separate quorum-sensing systems upregulate transcription of the same ABC transporter in Streptococcus pneumoniae. J Bacteriol 186(10):3078–3085

    PubMed  PubMed Central  CAS  Google Scholar 

  134. Yang Y, Lin J, Harrington A, Cornilescu G, Lau GW, Tal-Gan Y (2020) Designing cyclic competence-stimulating peptide (CSP) analogs with pan-group quorum-sensing inhibition activity in Streptococcus pneumoniae. Proc Natl Acad Sci 117(3):1689–1699

    PubMed  CAS  Google Scholar 

  135. Miller EL, Kjos M, Abrudan MI, Roberts IS, Veening JW, Rozen DE (2018) Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae. ISME J 12(10):2363–2375

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Okada M, Sato I, Cho SJ, Iwata H, Nishio T, Dubnau D, Sakagami Y (2005) Structure of the Bacillus subtilis quorum-sensing peptide pheromone ComX. Nat Chem Biol 1(1):23–24

    PubMed  CAS  Google Scholar 

  137. Fujiya M, Musch MW, Nakagawa Y, Hu S, Alverdy J, Kohgo Y, Schneewind O, Jabri B, Chang EB (2007) The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe 1(4):299–308

    PubMed  CAS  Google Scholar 

  138. Bareia T, Pollak S, Eldar A (2018) Self-sensing in Bacillus subtilis quorum-sensing systems. Nat Microbiol 3(1):83–89

    PubMed  CAS  Google Scholar 

  139. Oslizlo A, Stefanic P, Dogsa I, Mandic-Mulec I (2014) Private link between signal and response in Bacillus subtilis quorum sensing. Proc Natl Acad Sci 111(4):1586–1591

    PubMed  CAS  Google Scholar 

  140. Babel H, Naranjo-Meneses P, Trauth S, Schulmeister S, Malengo G, Sourjik V, Bischofs IB (2020) Ratiometric population sensing by a pump-probe signaling system in Bacillus subtilis. Nat Commun 11(1):1–13

    Google Scholar 

  141. Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186(6):1838–1850

    PubMed  PubMed Central  CAS  Google Scholar 

  142. Carnes EC, Lopez DM, Donegan NP, Cheung A, Gresham H, Timmins GS, Brinker CJ (2010) Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nat Chem Biol 6(1):41–45

    PubMed  CAS  Google Scholar 

  143. Daly SM, Elmore BO, Kavanaugh JS, Triplett KD, Figueroa M, Raja HA, El-Elimat T, Crosby HA, Femling JK, Cech NB, Horswill AR (2015) ω-Hydroxyemodin limits Staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation. Antimicrob Agents Chemother 59(4):2223–2235

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Kim MK, Zhao A, Wang A, Brown ZZ, Muir TW, Stone HA, Bassler BL (2017) Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nat Microbiol 2(8):17080

    PubMed  PubMed Central  CAS  Google Scholar 

  145. Cosgriff CJ, White CR, Teoh WP, Grayczyk JP, Alonzo F (2019) Control of Staphylococcus aureus quorum sensing by a membrane-embedded peptidase. Infection Immunity 87(5):e00019-19

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumdar, S., Roy, S. (2020). Summary of Experimental Results. In: Microbial Communication. Springer, Singapore. https://doi.org/10.1007/978-981-15-7417-7_9

Download citation

Publish with us

Policies and ethics