Skip to main content

Noise in Science and Technology vs. Biological System

  • Chapter
  • First Online:
Microbial Communication
  • 276 Accesses

Abstract

Noise plays an important role in science, engineering as well as in biological systems. The destructive role of noise has been extensively discussed in communication systems. The discovery of the phenomena called stochastic resonance clearly indicates the constructive role of noise for the nonlinear systems and hence in case of biological systems. Here in this chapter we discuss the important role of noise in cellular communication and sensory biology. Finally brief discussion is initiated on the concept of randomness and noise in science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  Google Scholar 

  2. Taub H, Schilling DL (1986) Principles of communication systems. McGraw-Hill Higher Education, New York

    Google Scholar 

  3. McDonnell MD, Abbott D (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol 5(5):e1000348

    Article  CAS  Google Scholar 

  4. Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys A Math Gen 14(11):L453–L457

    Article  Google Scholar 

  5. Benzi R, Parisi G, Sutera A, Vulpiani A (1982) Stochastic resonance in climatic change. Tellus 34(1):10–16

    Article  Google Scholar 

  6. Nicolis C, Nicolis G (1981) Stochastic aspects of climatic transitions–additive fluctuations. Tellus 33(3):225–234

    Article  Google Scholar 

  7. Fauve S, Heslot F (1983) Stochastic resonance in a bistable system. Phys Lett A 97(1–2):5–7

    Article  Google Scholar 

  8. McNamara B, Wiesenfeld K, Roy R (1988) Observation of stochastic resonance in a ring laser. Phys Rev Lett 60(25):2626

    Article  CAS  Google Scholar 

  9. Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Modern Phys 70(1):223

    Article  CAS  Google Scholar 

  10. Longtin A, Bulsara A, Moss F (1991) Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys Rev Lett 67(5):656

    Article  CAS  Google Scholar 

  11. Kosko B (2006) Noise. Penguin, New York

    Google Scholar 

  12. Neiman A, Silchenko A, Anishchenko V, Schimansky-Geier L (1998) Stochastic resonance: noise-enhanced phase coherence. Phys Rev E 58(6):7118

    Article  CAS  Google Scholar 

  13. Choi S, Yu E, Kim D, Urbano FJ, Makarenko V, Shin HS, Llinás RR (2010) Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q-and T-type calcium channels: a study in mutant mice. J Physiol 588(16):3031–3043

    Article  CAS  Google Scholar 

  14. Makarenko V, Llinás R (1998) Experimentally determined chaotic phase synchronization in a neuronal system. Proc Natl Acad Sci 95(26):15747–15752

    Article  CAS  Google Scholar 

  15. Stein RB, Gossen ER, Jones KE (2005) Neuronal variability: noise or part of the signal? Nat Rev Neurosci 6(5):389

    Article  CAS  Google Scholar 

  16. Majumdar S, Pal S (2018) Information transmission in microbial and fungal communication: from classical to quantum. J Cell Commun Signal 12(2):491–502

    Article  Google Scholar 

  17. Liu J, Prindle A, Humphries J, Sagarra MG, Asally M, Dong-yeon LD, Ly S, Ojalvo GJ, Süel MG (2015) Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523(7562):550–554

    Article  CAS  Google Scholar 

  18. Prindle A, Liu J, Asally M, Ly S, Ojalvo GJ, Süel MG (2015) Ion channels enable electrical communication in bacterial communities. Nature 527(7576):59–63

    Article  CAS  Google Scholar 

  19. Liu J, Corral MR, Prindle A, Dong-yeon LD, Larkin J, Sagarra GM, Ojalvo GJ, Süel MG (2017) Coupling between distant biofilms and emergence of nutrient time-sharing. Science 356(6338):638–642

    Article  CAS  Google Scholar 

  20. Roy S, Llinás R (2016) Non-local hydrodynamics of swimming bacteria and self-activated process. In: BIOMAT 2015: International symposium on mathematical and computational biology, pp 153–165

    Google Scholar 

  21. Arias AM, Hayward P (2006) Filtering transcriptional noise during development: concepts and mechanisms. Nat Rev Genet 7(1):34

    Article  CAS  Google Scholar 

  22. Heams T (2014) Randomness in biology. Math Struct Comput Sci 24(3):e240308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumdar, S., Roy, S. (2020). Noise in Science and Technology vs. Biological System. In: Microbial Communication. Springer, Singapore. https://doi.org/10.1007/978-981-15-7417-7_15

Download citation

Publish with us

Policies and ethics