Skip to main content

Electrical Communication Systems in Bacterial Biofilms and Ion-Channels

  • Chapter
  • First Online:
Microbial Communication
  • 301 Accesses

Abstract

Besides bacterial quorum sensing mechanism through chemical molecules, bacteria communicate also through electrical signalling mechanism. This electrical communication process is mediated by potassium ion-channels. Here, we explore the reconciliation in bacterial biofilms, metabolic codependence model with extended version, potassium ion-channel based electrical communication systems in bacteria communities, electrical attraction to biofilms and time-sharing behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrempf H, Schmidt O, Kümmerlen R, Hinnah S, Müller D, Betzler M, Steinkamp T, Wagner R (1995) A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J 14(21):5170–5178

    Article  CAS  Google Scholar 

  2. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

    Article  CAS  Google Scholar 

  3. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive Ion channel. Science 282(5397):2220–2226

    Article  CAS  Google Scholar 

  4. Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 Åreveals the molecular basis of anion selectivity. Nature 415(6869):287–294

    Article  CAS  Google Scholar 

  5. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417:523–526

    Article  CAS  Google Scholar 

  6. Booth IR (2003) Bacterial ion channels. In: Genetic engineering. Springer, Boston, pp 91–111

    Chapter  Google Scholar 

  7. Majumdar S, Pal S (2018) Information transmission in microbial and fungal communication: from classical to quantum. J Cell Commun Signal 12(2):491–502

    Article  Google Scholar 

  8. Iyer R, Iverson TM, Accardi A, Miller C (2002) A biological role for prokaryotic ClC chloride channels. Nature 419(6908):715–718

    Article  CAS  Google Scholar 

  9. Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294(5550):2372–2375

    Article  CAS  Google Scholar 

  10. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417(6888):515–522

    Article  CAS  Google Scholar 

  11. Chen GQ, Cui C, Mayer ML, Gouaux E (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402(6763):817–821

    Article  CAS  Google Scholar 

  12. Liu J, Prindle A, Humphries J, Sagarra MG, Asally M, Dong-yeon LD, Ly S, Ojalvo GJ, Süel MG (2015) Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523(7562):550–554

    Article  CAS  Google Scholar 

  13. Prindle A, Liu J, Asally M, Ly S, Ojalvo GJ, Süel MG (2015) Ion channels enable electrical communication in bacterial communities. Nature 527(7576):59–63

    Article  CAS  Google Scholar 

  14. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  Google Scholar 

  15. Humphries J, Xiong L, Liu J, Prindle A, Yuan F, Arjes AH, Tsimring L, Süel MG (2017) Species-independent attraction to biofilms through electrical signaling. Cell 168(1):200–209

    Article  CAS  Google Scholar 

  16. Majumdar S, Pal S (2017). Cross-species communication in bacterial world. J Cell Commun Signal 11(2):187–190

    Article  Google Scholar 

  17. Liu J, Corral MR, Prindle A, Dong-yeon LD, Larkin J, Sagarra GM, Ojalvo GJ, Süel MG (2017) Coupling between distant biofilms and emergence of nutrient time-sharing. Science 356(6338):638–642

    Article  CAS  Google Scholar 

  18. Majumdar S, Pal S (2017). Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence. J Cell Commun. Signal 11(3):281–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumdar, S., Roy, S. (2020). Electrical Communication Systems in Bacterial Biofilms and Ion-Channels. In: Microbial Communication. Springer, Singapore. https://doi.org/10.1007/978-981-15-7417-7_12

Download citation

Publish with us

Policies and ethics