Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 128 Accesses

Abstract

This thesis demonstrates the possibility of using group 5 metal oxide clusters as base catalysts and reveals how various structural factors, such as constituent metals, counter cations, and the local structures of base sites, affect their base catalytic performance. Based on these findings, strategies for further improvements and future prospects for the application of metal oxide clusters as base catalysts are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo S, Li J, Xu H, Zhang L, Cheng J-P (2007) Chiral amine−polyoxometalate hybrids as highly efficient and recoverable asymmetric enamine catalysts. Org Lett 9:3675

    Google Scholar 

  2. Jiang C, Lesbani A, Kawamoto R, Uchida S, Mizuno N (2006) Channel-selective independent sorption and collection of hydrophilic and hydrophobic molecules by Cs2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] Ionic crystal. J Am Chem Soc 128:14240

    Google Scholar 

  3. Song Y-F, Long D-L, Ritchie C, Cronin L (2011) Nanoscale polyoxometalate‐based inorganic/organic hybrids. Chem Rec 11:158

    Google Scholar 

  4. Itagaki S, Kamata K, Yamaguchi K, Mizuno N (2012) Rhodium acetate/base-catalyzed N-silylation of indole derivatives with hydrosilanes. Chem Commun 48:9269

    Google Scholar 

  5. Itagaki S, Sunaba H, Kamata K, Yamaguchi K, Mizuno N (2013) Hydrosilylation of various multiple bonds by a simple combined catalyst of a tungstate monomer and rhodium acetate. Chem Lett 42:980

    Google Scholar 

  6. Nyman M, Celestian AJ, Parise JB, Holland GP, Alam TM (2006) Solid-state structural characterization of a rigid framework of lacunary heteropolyniobates. Inorg Chem 45:1043

    Google Scholar 

  7. Nyman M, Criscenti LJ, Bonhomme F, Rodriguez MA, Cygna RT (2003) Synthesis, structure, and molecular modeling of a titanoniobate isopolyanion. J Solid State Chem 176:111

    Google Scholar 

  8. Ohlin CA, Villa EM, Fettinger JC, Casey WH (2009) A new titanoniobate ion—completing the series [Nb10O28]6−, [TiNb9O28]7− and [Ti2Nb8O28]8−. Dalton Trans 15:2677

    Google Scholar 

  9. Anderson TM, Rodriguez MA, Stewat TM, Bixler JN, Xu W, Parise JB, Nyman M (2008) Controlled assembly of [Nb6–xWxO19](8–x)– (x = 0–4) lindqvist Ions with (Amine) copper complexes. Eur J Inorg Chem 21:3286

    Google Scholar 

  10. Lewis LN (1993) Chemical catalysis by colloids and clusters. Chem Rev 93:2693

    Google Scholar 

  11. Yamazoe S, Koyasu K, Tsukuda T (2014) Nonscalable oxidation catalysis of gold clusters. Acc Chem Res 47:816

    Google Scholar 

  12. Putaj P, Lefebvre F (2011) Polyoxometalates containing late transition and noble metal atoms. Coord Chem Rev 255:1642

    Google Scholar 

  13. Hayashi Y, Toriumi K, Isobe K (1988) Novel triple-cubane type organometallic oxide clusters: [MCp*MoO4]4nH2O (M = Rh and Ir; Cp* = C5Me5; n = 2 for Rh and 0 for Ir). J Am Chem Soc 110:3666

    Google Scholar 

  14. Süss-Fink G, Plasseraud L, Ferrand V, Stanislas S, Neels A, Stoeckli-Evans H, Henry M, Laurenczy G, Roulet R (1998) Amphiphilic organoruthenium oxomolybdenum and oxovanadium clusters. Polyhedron 17:2817

    Google Scholar 

  15. Gao G-G, Cheng P-S, Mak TCW (2009) Acid-induced surface functionalization of polyoxometalate by enclosure in a polyhedral silver−alkynyl cage. J Am Chem Soc 131:18257

    Google Scholar 

  16. Kurasawa M, Arisaka F, Ozeki T (2015) Asymmetrically fused polyoxometalate–silver alkynide composite cluster. Inorg Chem 54:1650

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Hayashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayashi, S. (2020). Concluding Remarks. In: Key Structural Factors of Group 5 Metal Oxide Clusters for Base Catalytic Application. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-7348-4_6

Download citation

Publish with us

Policies and ethics