Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 227 Accesses

Abstract

In this chapter, the structural and catalytic properties of metal oxide clusters [MxOy]n (M: metal), called polyoxometalates (POMs), are summarized. POMs have been applied as catalysts for acid/base-catalyzed, oxidation, photocatalytic, and electrochemical reactions by exploiting their controllable geometric structures and tunable chemical properties. Because POMs have atomically precise structures, a combination of experimental and theoretical studies has provided an understanding of how POMs function as catalysts and the key structural factors for catalysis. This chapter summarizes the previous work on the structural diversity of POMs, especially group 5 POMs, with a focus on the origin of their unique catalytic properties for acid/base-catalyzed and oxidation reactions. Finally, based on the trade-off between the stability and basicity of POM clusters, the possibility of using group 5 elements as the constituent metals of POMs for base catalytic applications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed 30:34

    Google Scholar 

  2. Hill CL (1998) Introduction: Polyoxometalates multicomponent molecular vehicles to probe fundamental issues and practical problems. Chem Rev 98:1

    Google Scholar 

  3. Long D-L, Tsunashima R, Cronin L (2010) Polyoxometalates: building blocks for functional nanoscale systems. Angew Chem Int Ed 49:1736

    Google Scholar 

  4. Yamamura K, Sakaki Y (1973) Crystal structure of the β-12-tungstosilicate anion. J Chem Soc Chem Commun 648

    Google Scholar 

  5. Cadot E, Béreau V, Marg B, Halut S, Sécheresse F (1996) Syntheses and characterization of γ-[SiW10M2S2O38]6− (M = MoV, WV). Two keggin oxothio heteropolyanions with a metal−metal bond. Inorg Chem 35:3099

    Google Scholar 

  6. Chae HK, Klemperer WG, Páez L, Day VW, Eberspacher TA (1992) Synthesis and structure of a high nuclearity oxomolybdenum (V) complex, [(C5Me5RhIII)8(MoV12O36)(MoVIO4)]2+. Inorg Chem 31:3187

    Google Scholar 

  7. Sartzi H, Miras HN, Vilà-Nadal L, Long D-L, Cronin L (2015) Trapping the δ isomer of the polyoxometalate‐based keggin Cluster with a tripodal ligand. Angew Chem Int Ed 54:15488

    Google Scholar 

  8. Dawson B (1953) The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62).14H2O. Acta Crystallogr 6:113

    Google Scholar 

  9. Lindqvist I (1953) The structure of the hexaniobate ion in 7 Na2O∙6 Nb2O5∙32 H2O. Ark Kemi 5:247

    Google Scholar 

  10. Müller A, Krickemeyer E, Meyer J, Bögge H, Peters F, Plass W, Diemann E, Dillinger S, Nonnenbruch F, Randerath M, Menke C (1995) [Mo154(NO)14O420(OH)28(H2O)70](25 ± 5)−: a water‐soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000. Angew Chem Int Ed 34:2122

    Google Scholar 

  11. Müller A, Gouzerh P (2012) From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry. Chem Soc Rev 41:7431

    Google Scholar 

  12. Müller A, Serain C (2000) Soluble molybdenum blues “des pudels kern”. Acc Chem Res 33:2

    Google Scholar 

  13. Müller A, Beckmann E, Bögge H, Schmidtmann M, Dress A (2002) Inorganic chemistry goes protein size: a Mo368 nano‐hedgehog initiating nanochemistry by symmetry breaking. Angew Chem Int Ed 41:1162

    Google Scholar 

  14. Zheng S-T, Yang G-Y (2012) Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem Soc Rev 41:7623

    Google Scholar 

  15. Domaille PJ (1990) Vanadium(V) Substituted dodecatungstophosphates. Inorg Synth 27:96

    Google Scholar 

  16. Knoth WH, Domaille PJ, Harlow RL (1986) Heteropolyanions of the types M3(W9PO34)212− and MM'M"(W9PO34)212−: novel coordination of nitrate and nitrite. Inorg Chem 25:1577

    Google Scholar 

  17. Liu J, Ortega F, Sethuraman P, Katsoulis DE, Costello CE, Pope MT (1992) Trimetallo derivatives of lacunary 9-tungstosilicate heteropolyanions. Part 1. Synthesis and characterization. J Chem Soc Dalton Trans 1901

    Google Scholar 

  18. Cómez-Garcla CJ, Borrás-Almenar JJ, Coronado E, Ouahab L (1994) Single-crystal x-ray structure and magnetic properties of the polyoxotungstate complexes Na16[M4(H2O)2(P2W15O56)2]∙nH2O (M = MnII, n = 53; M = NiII, n = 52): an antiferromagnetic MnII tetramer and a ferromagnetic NiII tetramer. Inorg Chem 33:4016

    Google Scholar 

  19. Bösing M, Nöh A, Loose I, Krebs B (1998) Highly efficient catalysts in directed oxygen-transfer processes: synthesis, structures of novel manganese-containing heteropolyanions, and applications in regioselective epoxidation of dienes with hydrogen peroxide. J Am Chem Soc 120:7252

    Google Scholar 

  20. Kortz U, Isber S, Dickman MH, Ravot D (2000) Sandwich-type silicotungstates: structure and magnetic properties of the dimeric polyoxoanions [{SiM2W9O34(H2O)}2]12− (M = Mn2+, Cu2+, Zn2+). Inorg Chem 39:2915

    Google Scholar 

  21. Bi L-H, Wang E-B, Peng J, Huang R-D, Xu L, Hu C-W (2000) Crystal structure and replacement reaction of coordinated water molecules of the heteropoly compounds of sandwich-type tungstoarsenates. Inorg Chem 39:671

    Google Scholar 

  22. Proust A, Thouvenot R, Gouzerh P (2008) Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science. Chem Commun 1837

    Google Scholar 

  23. Kang H, Zubieta J (1988) Co-ordination complexes of polyoxomolybdates with a hexanuclear core: synthesis and structural characterization of (NBun4)2[Mo6O18(NNMePh)]. J Chem Soc Chem Commun 1192

    Google Scholar 

  24. Du Y, Rheingold AL, Maatta EA (1992) A polyoxometalate incorporating an organoimido ligand: preparation and structure of [Mo5O18(MoNC6H4CH3)]2-. J Am Chem Soc 114:345

    Google Scholar 

  25. Wei Y, Xu B, Barnes CL, Peng Z (2001) An efficient and convenient reaction protocol to organoimido derivatives of polyoxometalates. J Am Chem Soc 123:4083

    Google Scholar 

  26. Kwen H, Young VC, Maatta EA (1999) A diazoalkane derivative of a polyoxometalate: preparation and structure of [Mo6O18(NNC(C6H4OCH3)CH3)]2−. Angew Chem Int Ed 38:1145

    Google Scholar 

  27. Bottomley F, Chen J (1992) Organometallic oxides: oxidation of [(η-C5Me5)Mo(CO)2]2 with O2 to form syn-[(η-C5Me5)MoCl]2(µ-Cl)2(µ-O), syn-[(η-C5Me5)MoCl]2(µ-Cl)(µ-CO3H)(µ-O), and [C5Me5O][(η-C5Me5)Mo6O18]. Organometallics 11:3404

    Google Scholar 

  28. Collange E, Metteau L, Richard P, Poli R (2004) Synthesis and structure of a new organometallic polyoxomolybdate, Cp2Mo6O17. Polyhedron 23:2605

    Google Scholar 

  29. Gouzerh P, Jeannin Y, Proust A, Robert F (1989) Two novel polyoxomolybdates containing the (MoNO)3⊕ unit: [Mo5Na(NO)O13(OCH3)4]2⊖ and [Mo6(NO)O18]3⊖. Angew Chem Int Ed 28:1363

    Google Scholar 

  30. Hsieh T-C, Zubieta J (1986) Synthesis and characterization of oxomolybdate clusters containing coordinatively bound organo-diazenido units: the crystal and molecular structure of the hexanuclear diazenido-oxomolybdate, (NBun4)3[Mo6O18(N2C6H5)]. Polyhedron 5:1655

    Google Scholar 

  31. Nyman M (2011) Polyoxoniobate chemistry in the 21st century. Dalton Trans 40:8049

    Google Scholar 

  32. Nyman M, Alam TA, Bonhomme F, Rodriguez MA, Frazer CS, Welk ME (2006) Solid-state structures and solution behavior of alkali salts of the [Nb6O19]8− lindqvist Ion. J Cluster Sci 17:197

    Google Scholar 

  33. Graeber EJ, Morosin B (1977) The molecular configuration of the decaniobate ion (Nb10O286−). Acta Cryst 33:2137

    Google Scholar 

  34. Matsumoto M, Ozawa Y, Yagasaki A (2010) Reversible dimerization of decaniobate. Polyhedron 29:2196

    Google Scholar 

  35. Ohlin CA, Villa EM, Casey WH (2009) One-pot synthesis of the decaniobate salt [N(CH3)4]6[Nb10O28]·6H2O from hydrous niobium oxide. Inorg Chim Acta 362:1391

    Google Scholar 

  36. Nyman M, Bonhomme F, Alam TM, Rodriguez MA, Cherry BR, Krumhansl JL, Sattler AM (2002) A general synthetic procedure for heteropolyniobates. Science 297:996

    Google Scholar 

  37. Maekawa M, Ozawa Y, Yagasaki A (2006) Icosaniobate: A new member of the isoniobate family. Inorg Chem 45:9608

    Google Scholar 

  38. Bontchev RP, Nyman M (2006) Evolution of polyoxoniobate cluster anions. Angew Chem Int Ed 45:6670

    Google Scholar 

  39. Niu J, Ma P, Niu H, Li J, Zhao J, Song Y, Wang J (2007) Giant polyniobate clusters based on [Nb7O22]9− units derived from a Nb6O19 precursor. Chem Eur J 13:8739

    Google Scholar 

  40. Tsunashima R, Long D-L, Miras HN, Gabb D, Pradeep CP, Cronin L (2010) The construction of high‐nuclearity isopolyoxoniobates with pentagonal building blocks: [HNb27O76]16− and [H10Nb31O93(CO3)]23−. Angew Chem Int Ed 49:113

    Google Scholar 

  41. Huang P, Qin C, Su Z-M, Xing Y, Wang X-L, Shao K-Z, Lan Y-Q, Wang E-B (2012) Self-assembly and photocatalytic properties of polyoxoniobates: {Nb24O72}, {Nb32O96}, and {K12Nb96O288} clusters. J Am Chem Soc 134:14004

    Google Scholar 

  42. Jin L, Zhu Z-K, Wu Y-L, Qi Y-J, Li X-X, Zheng S-T (2017) Record high-nuclearity polyoxoniobates: discrete nanoclusters {Nb114}, {Nb81}, and {Nb52}, and extended frameworks based on {Cu3Nb78} and {Cu4Nb78}. Angew Chem Int Ed 56:16288

    Google Scholar 

  43. Nyman M, Criscenti LJ, Bonhomme F, Rodriguez MA, Cygna RT (2003) Synthesis, structure, and molecular modeling of a titanoniobate isopolyanion. J Solid State Chem 176:111

    Google Scholar 

  44. Ohlin CA, Villa EM, Fettinger JC, Casey WH (2009) A new titanoniobate ion—completing the series [Nb10O28]6−, [TiNb9O28]7− and [Ti2Nb8O28]8−. Dalton Trans 15:2677

    Google Scholar 

  45. Son J-H, Ohlin CA, Casey WH (2013) Highly soluble iron- and nickel-substituted decaniobates with tetramethylammonium countercations. Dalton Trans 42:7529

    Google Scholar 

  46. Son J-H, Wang J, Casey WH (2014) Structure, stability and photocatalytic H2 production by Cr-, Mn-, Fe-, Co-, and Ni-substituted decaniobate clusters. Dalton Trans 43:17928

    Google Scholar 

  47. Son J-H, Casey WH (2015) Two rhIII-substituted polyoxoniobates and their base-induced transformation: [H2RhNb9O28]6− and [Rh2(OH)4Nb10O30]8−. Dalton Trans 44:20330

    Google Scholar 

  48. Anderson TM, Rodriguez MA, Stewat TM, Bixler JN, Xu W, Parise JB, Nyman M (2008) Controlled assembly of [Nb6–xWxO19](8–x)– (x = 0–4) lindqvist Ions with (Amine) copper complexes. Eur J Inorg Chem 21:3286

    Google Scholar 

  49. Guo G, Xu Y, Cao J, Hu C (2012) The {V4Nb6O30} cluster: A new type of vanadoniobate anion structure. Chem Eur J 18:3493

    Google Scholar 

  50. Wu H-L, Zhang Z-M, Li Y-G, Wang X-L, Wang E-B (2015) Recent progress in polyoxoniobates decorated and stabilized via transition metal cations or clusters. CrystEngComm 17:6261

    Google Scholar 

  51. Son J-H, Ohlin CA, Casey WH (2013) A decatungstate-type polyoxoniobate with centered manganese: [H2MnIVNb10O32]8− as a soluble tetramethylammonium salt. Dalton Trans 42:13339

    Google Scholar 

  52. Son J-H, Ohlin CA, Casey WH (2012) A new class of soluble and stable transition-metal-substituted polyoxoniobate: [Cr2(OH)4Nb10O30]8−. Dalton Trans 41:12674

    Google Scholar 

  53. Ohlin CA, Villa EM, Fettinger JC, Casey WH (2008) The [Ti12Nb6O44]10− Ion—A new type of polyoxometalate structure. Angew Chem Int Ed 47:5634

    Google Scholar 

  54. Shen J-Q, Yao S, Zhang Z-M, Wu H-H, Zhang T-Z, Wang E-B (2013) Self-assembly and photocatalytic property of germanoniobate [H6Ge4Nb16O56]10−: encapsulating four {GeO4} tetrahedra within a {Nb16} cage. Dalton Trans 42:5812

    Google Scholar 

  55. Shen J-Q, Zhang Y, Zhang Z-M, Li Y-G, Gao Y-Q, Wang E-B (2014) Polyoxoniobate-based 3D framework materials with photocatalytic hydrogen evolution activity. Chem Commun 50:6017

    Google Scholar 

  56. Nyman M, Celestian AJ, Parise JB, Holland GP, Alam TM (2006) Solid-state structural characterization of a rigid framework of lacunary heteropolyniobates. Inorg Chem 45:1043

    Google Scholar 

  57. Lindqvist I, Aronsson B (1954) The structure of the hexatantalate Ion in 4K2O·3Ta2O5·16H2O. Arkiv Kemi 7:49

    Google Scholar 

  58. Matsumoto M, Ozawa Y, Yagasaki A, Zhe Y (2013) Decatantalate–the last member of the group 5 decametalate family. Inorg Chem 52:7825

    Google Scholar 

  59. Son J-H, Casey WH (2016) Titanium‐substituted polyoxotantalate clusters exhibiting wide pH stabilities: [Ti2Ta8O28]8− and [Ti12Ta6O44]10−. Chem Eur J 22:14155

    Google Scholar 

  60. Hill CL, Prosser-McCartha M (1995) Homogeneous catalysis by transition metal oxygen anion clusters. Coord Chem Rev 143:407

    Google Scholar 

  61. Kozhevnikov IV (1998) Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem Rev 98:171

    Google Scholar 

  62. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199

    Google Scholar 

  63. Sadakane M, Steckhan E (1998) Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev 98:219

    Google Scholar 

  64. Keita B, Nadjo L (2007) Polyoxometalate-based homogeneous catalysis of electrode reactions: recent achievements. J Mol Catal A Chem 262:190

    Google Scholar 

  65. Lv HJ, Geletii YV, Zhao CC, Vickers JW, Zhu GB, Luo Z, Song J, Lian TQ, Musaev DG, Hill CL (2012) Polyoxometalate water oxidation catalysts and the production of green fuel. Chem Soc Rev 41:7572

    Google Scholar 

  66. López X, Carbó JJ, Bo C, Problet JM (2012) Structure, properties and reactivity of polyoxometalates: a theoretical perspective. Chem Soc Rev 41:7537

    Google Scholar 

  67. Sun M, Zhang J, Putaj P, Caps V, Lefebvre F, Pelletier J, Basset J-M (2013) Catalytic oxidation of light alkanes (C1–C4) by heteropoly compounds. Chem Rev 114:981

    Google Scholar 

  68. Sumliner JM, Lv H, Fielden J, Geletii YV, Hill CL (2014) Polyoxometalate multi‐electron‐transfer catalytic systems for water splitting. Eur J Inorg Chem 2014:635

    Google Scholar 

  69. Wang S-S, Yang G-Y (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115:4893

    Google Scholar 

  70. Kamata K, Sugahara K (2017) Catalysts base catalysis by mono- and polyoxometalates. 7:345

    Google Scholar 

  71. Kozhevnikov IV (2003) Friedel–crafts acylation and related reactions catalysed by heteropoly acids. Appl Catal A Gen 256:3

    Google Scholar 

  72. Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559

    Google Scholar 

  73. Okuhara T, Nishihara T, Watanabe H, Misono M (1992) Insoluble heteropoly compounds as highly active catalysts for liquid-phase reactions. J Mol Catal 74:247

    Google Scholar 

  74. Barcza L, Pope MT (1975) Heteroconjugation of inorganic anions in nonaqueous solvents. III. Complexes of polymolybdates and -tungstates with chloral hydrate. J Phys Chem 79:92

    Google Scholar 

  75. Izumi Y, Matsuo K, Urabe K (1983) Efficient homogeneous acid catalysis of heteropoly acid and its characterization through ether cleavage reactions. J Mol Catal 18:299

    Google Scholar 

  76. Kempf JY, Rohmer MM, Poblet JM, Bo C, Bénard M (1992) Relative basicities of the oxygen sites in [V10O28]6-. An analysis of the ab initio determined distributions of the electrostatic potential and of the laplacian of charge density. J Am Chem Soc 114:1136

    Google Scholar 

  77. Dolbecq A, Guirauden A, Fourmigue M, Boubekeur K, Batail P, Rohmer MM, Bénard M, Coulon C, Salle M, Blanchard P (1999) Relative basicities of the oxygen atoms of the linquist polyoxometalate [Mo6O19]2– and their recognition by hydroxyl groups in radical cation salts based on functionalized tetrathiafulvalene π donors. J Chem Soc Dalton Trans 1241

    Google Scholar 

  78. Fernández JA, López X, Poblet JM (2007) A DFT study on the effect of metal, anion charge, heteroatom and structure upon the relative basicities of polyoxoanions. J Mol Catal A Chem 262:236

    Google Scholar 

  79. Guan W, Yan LK, Su ZM, Liu SX, Zhang M, Wang XH (2005) Electronic properties and stability of dititaniumIV substituted α-keggin polyoxotungstate with heteroatom phosphorus by DFT. Inorg Chem 44:100

    Google Scholar 

  80. Macht J, Janik MJ, Neurock M, Iglesia E (2007) Catalytic consequences of composition in polyoxometalate clusters with keggin structure. Angew Chem Int Ed 46:7864

    Google Scholar 

  81. Macht J, Janik MJ, Neurock M, Iglesia E (2008) Mechanistic consequences of composition in acid catalysis by polyoxometalate keggin clusters. J Am Chem Soc 130:10369

    Google Scholar 

  82. Macht J, Carr RT, Iglesia E (2009) Functional assessment of the strength of solid acid catalysts. J Catal 264:54

    Google Scholar 

  83. Carr RT, Neurock M, Iglesia E (2011) Catalytic consequences of acid strength in the conversion of methanol to dimethyl ether. J Catal 278:78

    Google Scholar 

  84. Nguyen N, Kendell S, Le Minh C, Brown T (2010) Mechanistic investigation into the rearrangement of lactone into methacrylic acid over phosphomolybdic Acid Catalyst. Catal Lett 136:28

    Google Scholar 

  85. Janik MJ, Davis RJ, Neurock M (2006) A density functional theory study of the alkylation of isobutane with butene over phosphotungstic acid. J Catal 244:65

    Google Scholar 

  86. Mizuno N, Kamata K (2011) Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord Chem Rev 255:2358

    Google Scholar 

  87. Venturello C, Alneri E, Ricci M (1983) A new, effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions. J Org Chem 48:3831

    Google Scholar 

  88. Venturello C, D’Aloisio R, Bart JCJ, Ricci M (1985) A new peroxotungsten heteropoly anion with special oxidizing properties: synthesis and structure of tetrahexylammonium tetra(diperoxotungsto)phosphate(3-). J Mol Catal 32:107

    Google Scholar 

  89. Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M (1988) Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1,2-diols and olefins. J Org Chem 53:3587

    Google Scholar 

  90. Ishii Y, Sakata Y (1990) A novel oxidation of internal alkynes with hydrogen peroxide catalyzed by peroxotungsten compounds. J Org Chem 55:5545

    Google Scholar 

  91. Xi Z, Zhou N, Sun Y, Li K (2001) Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 292:1139

    Google Scholar 

  92. Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N (2003) Efficient epoxidation of olefins with ≥99% selectivity and use of hydrogen peroxide. Science 300:964

    Google Scholar 

  93. Mizuno N, Yamaguchi K, Kamata K (2011) Molecular design of polyoxometalate-based compounds for environmentally-friendly functional group transformations: from molecular catalysts to heterogeneous catalysts. Catal Surv Asia 15:68

    Google Scholar 

  94. Kamata K, Kotani M, Yamaguchi K, Hikichi S, Mizuno N (2007) Olefin epoxidation with hydrogen peroxide catalyzed by lacunary polyoxometalate [γ‐SiW10O34(H2O)2]4−. Chem Eur J 13:639

    Google Scholar 

  95. Sartorel A, Carraro M, Bagno A, Scorrano G, Bonchio M (2007) Asymmetric tetraprotonation of γ-[(SiO4)W10O32]8− triggers a catalytic epoxidation reaction: perspectives in the assignment of the active catalyst. Angew Chem Int Ed 46:3255.

    Google Scholar 

  96. Musaev DG, Morokuma K, Geletii YV, Hill CL (2004) Computational modeling of Di-Transition-metal-substituted γ-keggin polyoxometalate anions. structural refinement of the protonated divacant lacunary silicodecatungstate. Inorg Chem 43:7702

    Google Scholar 

  97. Prabhakar R, Morokuma K, Hill CL, Musaev DG (2006) Insights into the mechanism of selective olefin epoxidation catalyzed by [γ-(SiO4)W10O32H4]4−. A Computational Study. Inorg Chem 45:5703

    Google Scholar 

  98. Hill CL, Brown RB Jr (1986) Sustained epoxidation of olefins by oxygen donors catalyzed by transition metal-substituted polyoxometalates, oxidatively resistant inorganic analogs of metalloporphyrins. J Am Chem Soc 108:536

    Google Scholar 

  99. Neuman R, Gara M (1994) Highly active manganese-containing polyoxometalate as catalyst for epoxidation of alkenes with hydrogen peroxide. J Am Chem Soc 116:5509

    Google Scholar 

  100. Tourné CM, Tourné GF, Zonnenvijlle F (1991) Chiral polytungstometalates [WM3(H2O)2(XW9O34)2]12–(X = M = Zn or CoII) and their M-substituted derivatives. Syntheses, chemical, structural and spectroscopic study of some D,L sodium and potassium salts. J Chem Soc Dalton Trans 143

    Google Scholar 

  101. Kholdeeva O, Grigoriev V, Maksimov G, Zamaraev K (1996) Alkene oxidation catalyzed by transition metal substituted keggin-type heteropolyanions. Top Catal 3:313

    Google Scholar 

  102. Mizuno N, Nozaki C, Kiyoto I, Misono M (1999) Selective oxidation of alkenes catalyzed by di-Iron-substituted silicotungstate with highly efficient utilization of hydrogen peroxide. J Catal 182:285

    Google Scholar 

  103. Nakagawa Y, Kamata K, Kotani M, Yamaguchi K, Mizuno N (2005) Polyoxovanadometalate‐catalyzed selective epoxidation of alkenes with hydrogen peroxide. Angew Chem Int Ed 44:5136

    Google Scholar 

  104. Kamata K, Sugahara K, Yonehara K, Ishimoto R, Mizuno N (2011) Efficient epoxidation of electron‐deficient alkenes with hydrogen peroxide catalyzed by [γ‐PW10O38V2(μ‐OH)2]3−. Chem Eur J 17:7549

    Google Scholar 

  105. Neumann R, Gara M (1995) The manganese-containing polyoxometalate, [WZnMnII2(ZnW9O34)2]12−, as a remarkably effective catalyst for hydrogen peroxide mediated oxidations. J Am Chem Soc 117:5066

    Google Scholar 

  106. Adam W, Alsters PL, Neumann R, Saha-Möller CR, Sloboda-Rozner D, Zhang R (2002) A new highly selective method for the catalytic epoxidation of chiral allylic alcohols by sandwich-type polyoxometalates with hydrogen peroxide. Synlett 2011

    Google Scholar 

  107. Adam W, Alsters PL, Neumann R, Saha-Möller CR, Sloboda-Rozner D, Zhang R (2003) A highly chemoselective, diastereoselective, and regioselective epoxidation of chiral allylic alcohols with hydrogen peroxide, catalyzed by sandwich-type polyoxometalates:  enhancement of reactivity and control of selectivity by the hydroxy group through metal−alcoholate bonding. J Org Chem 68:1721

    Google Scholar 

  108. Clerici MG, Bellussi G, Romano U (1991) Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J Catal 129:159

    Google Scholar 

  109. Yamase T, Ishikawa E, Asai Y, Kanai S (1996) Alkene epoxidation by hydrogen peroxide in the presence of titanium-substituted Keggin-type polyoxotungstates [PTixW12−xO40](3+2x)− and [PTixW12−xO40−x(O2)x](3+2x)− (x = 1 and 2). J Mol Catal A Chem 114:237

    Google Scholar 

  110. Kholdeeva OA (2006) Titanium-monosubstituted polyoxometalates: relation between homogeneous and heterogeneous Ti-single-site-based catalysis. Top Catal 40:229

    Google Scholar 

  111. Yamase T, Ozeki T, Motomura S (1992) 183W NMR and X-Ray crystallographic studies on the peroxo complexes of the Ti-substituted α-keggin typed tungstophosphates. Bull Chem Soc Jpn 65:1453

    Google Scholar 

  112. Kato CN, Negishi S, Yoshida K, Hayashi K, Nomiya K (2005) The strong influence of structures around titanium centers in dimeric mono-, di-, and tri-titanium(IV)-substituted keggin polyoxotungstates on the catalytic epoxidation of alkenes with H2O2. Appl Catal A Gen 292:97

    Google Scholar 

  113. Jimenez-Lozano P, Ivanchikova ID, Kholdeeva OA, Poblet JM, Carbo JJ (2012) Alkene oxidation by Ti-containing polyoxometalates. Unambiguous characterization of the role of the protonation state. Chem Commun 48:9266

    Google Scholar 

  114. Kholdeeva OA, Trubitsina TA, Timofeeva MN, Maksimov GM, Maksimovskaya RI, Rogov VA (2005) The role of protons in cyclohexene oxidation with H2O2 catalysed by Ti(IV)-monosubstituted keggin polyoxometalate. J Mol Catal A Chem 232:173

    Google Scholar 

  115. Hattori H (1995) Heterogeneous basic catalysis. Chem Rev 95:537

    Google Scholar 

  116. Matsumoto M, Ozawa Y, Yagasaki A (2011) Which is the most basic oxygen in [Ta6O19]8−? - synthesis and structural characterization of [H2Ta6O19]6−. Inorg Chem Commun 14:115

    Google Scholar 

  117. Kimura T, Kamata K, Mizuno N (2012) A bifunctional tungstate catalyst for chemical fixation of CO2 at atmospheric pressure. Angew Chem Int Ed 51:6700

    Google Scholar 

  118. Kimura T, Sunaba H, Kamata K, Mizuno N (2012) Efficient [WO4]2–-catalyzed chemical fixation of carbon dioxide with 2-Aminobenzonitriles to quinazoline-2,4 (1H,3H)-diones. Inorg Chem 51:13001

    Google Scholar 

  119. Kamata K, Kimura T, Sunaba H, Mizuno N (2014) Scope of chemical fixation of carbon dioxide catalyzed by a bifunctional monomeric tungstate. Catal Today 226:160

    Google Scholar 

  120. Itagaki S, Kamata K, Yamaguchi K, Mizuno N (2012) Rhodium acetate/base-catalyzed N-silylation of indole derivatives with hydrosilanes. Chem Commun 48:9269

    Google Scholar 

  121. Itagaki S, Sunaba H, Kamata K, Yamaguchi K, Mizuno N (2013) Hydrosilylation of various multiple bonds by a simple combined catalyst of a tungstate monomer and rhodium acetate. Chem Lett 42:980

    Google Scholar 

  122. Sunaba H, Kamata K, Mizuno N (2014) Selective N‐Alkylation of Indoles with α,β‐Unsaturated compounds catalyzed by a monomeric phosphate. chemCatChem 6:2333

    Google Scholar 

  123. Sugahara K, Kimura T, Kamata K, Yamaguchi K, Mizuno N (2012) A highly negatively charged γ-keggin germanodecatungstate efficient for knoevenagel condensation. Chem Commun 48:8422

    Google Scholar 

  124. Sugahara K, Satake N, Kamata K, Nakajima T, Mizuno N (2014) A basic germanodecatungstate with a −7 Charge: efficient chemoselective acylation of primary alcohols. Angew Chem Int Ed 53:13248

    Google Scholar 

  125. Yoshida A, Hikichi S, Mizuno N (2007) Acid–base catalyses by dimeric disilicoicosatungstates and divacant γ-keggin-type silicodecatungstate parent: reactivity of the polyoxometalate compounds controlled by step-by-step protonation of lacunary W=O sites. J Organometal Chem 692:455

    Google Scholar 

  126. Davoodnia A (2012) An efficient method for knoevenagel condensation catalyzed by tetrabutylammonium hexatungstate [TBA]2[W6O19] as novel and reusable heterogeneous catalyst. Synth React Inorg Met-Org Nano-Met Chem 42:1022

    Google Scholar 

  127. Minato T, Suzuki K, Kamata K, Mizuno N (2014) Synthesis of α‐Dawson‐type Silicotungstate [α‐Si2W18O62]8− and protonation and deprotonation Inside the aperture through intramolecular hydrogen bonds. Chem Eur J 20:5946

    Google Scholar 

  128. Zhao S, Chen Y, Song Y-F (2014) Tri-lacunary polyoxometalates of Na8H[PW9O34] as heterogeneous lewis base catalysts for knoevenagel condensation, cyanosilylation and the synthesis of benzoxazole derivatives. Appl Catal A Gen 475:140

    Google Scholar 

  129. Xu Q, Niu Y, Wang G, Li Y, Zhao Y, Singh V, Niu J, Wang J (2018) Polyoxoniobates as a superior lewis base efficiently catalyzed Knoevenagel condensation. Mol Catal 453:93

    Google Scholar 

  130. Gutierrez LF, Nope E, Rojas HA, Cubillos JA, Sathicq ÁG, Romanelli GP (2018) New application of decaniobate salt as basic solid in the synthesis of 4H-pyrans by microwave assisted multicomponent reactions. Res Chem Intermed 44:5559

    Google Scholar 

  131. Ge W, Wang X, Zhang L, Du L, Zhou Y, Wang J (2016) Fully-occupied keggin type polyoxometalate as solid base for catalyzing CO2 cycloaddition and knoevenagel condensation. Catal Sci Technol 6:460

    Google Scholar 

  132. Zhang Y (1982) Electronegativities of elements in valence states and their applications. 1. Electronegativities of elements in valence states. Inorg Chem 21:3886

    Google Scholar 

  133. Johansson G (1960) On the crystal structure of some basic aluminium salts. Acta Chem Scand 14:771

    Google Scholar 

  134. Casey WH (2006) Large aqueous aluminum hydroxide molecules. Chem Rev 106:1

    Google Scholar 

  135. Sadeghi O, Zakharov LN, Nyman M (2015) Aqueous formation and manipulation of the iron-oxo keggin ion. Science 347:1359

    Google Scholar 

  136. Campana CF, Chen Y, Day VW, Klemperer WG, Sparks RA (1996) Polyoxotitanates join the keggin family: synthesis, structure and reactivity of [Ti18O28H][OBut]17. J Chem Soc Dalton Trans 691

    Google Scholar 

  137. Coppens P, Chen Y, Trzop E (2014) Crystallography and properties of polyoxotitanate nanoclusters. Chem Rev 114:9645

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Hayashi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayashi, S. (2020). Introduction. In: Key Structural Factors of Group 5 Metal Oxide Clusters for Base Catalytic Application. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-7348-4_1

Download citation

Publish with us

Policies and ethics