Skip to main content

Scope of Honey in Diabetes and Metabolic Disorders

  • Chapter
  • First Online:
Therapeutic Applications of Honey and its Phytochemicals

Abstract

Metabolic disorders occur when unusual chemical reactions take place in the body amend usual metabolic pathways. Diabetes mellitus a metabolic disorder is generally characterized by high glucose level in blood over longer period of time. In type 1 diabetes, pancreas fails to produce adequate insulin and the same effect is due to the loss of beta cells of pancreas. Type 2 diabetes begins with resistance to insulin and accordingly gives no response to insulin. Gestational diabetes mellitus is similar to type 2 diabetes in various aspects and is having combination of inadequate insulin and sensitivity to it. For many years, honey is being used as a substitute for sugar and for providing medicinal benefits. In animal as well as human studies, convincing evidence specifies that honey displays antidiabetic as well as hypoglycemic effects. Additionally, honey consumption improved other disorders related to metabolism and to diabetes such as reduced levels of HbA1c (glycosylated hemoglobin) and hepatic transaminases and increased HDL cholesterol. The same was in addition to lowering hyperglycemia and oxidative stress. Besides depicting hypoglycemic effect, research has indicated that honey improves lipid anomalies in rats and humans suffering from diabetes. The beneficial effects of honey could also be limiting other disorders of metabolism and lessening damaging effects on various organs of the body that ultimately result in diabetic complications. Although there are few studies in the literature which are contrary to the above-depicted discussions regarding the beneficial effects of honey and its use in diabetic disorder. Also the clinical trials or studies on humans (both diabetic and healthy) are rather very sparse. It is anticipated that this book chapter will encourage fundamental investigation intended at explicating the mode of actions by which oligosaccharides present in honey improves antidiabetic/hypoglycemic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulrahman M, El-Hefnawy M, Hussein R, El-Goud AA (2011) The glycemic and peak incremental indices of honey, sucrose and glucose in patients with type 1 diabetes mellitus: effects on C-peptide level—a pilot study. Acta Diabetol 48(2):89–94

    Article  CAS  Google Scholar 

  • Acosta P (2010) Nutrition management of patients with inherited metabolic disorders. Jones and Bartlett, Sudbury MA, p 2. ISBN 9781449633127

    Google Scholar 

  • Agarwal OP, Pachauri A, Yadav H, Urmila J, Goswamy HM, Chapperwal A, Bisen PS, Prasad GB (2007b) Subjects with impaired glucose tolerance exhibit a high degree of tolerance to honey. J Med Food 10:473–478

    Google Scholar 

  • Agrawal OP, Pachauri A, Yadav H et al (2007a) Subjects with impaired glucose tolerance exhibit a high degree of tolerance to honey. J Med Food 10(3):473–478

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Azim MK, Mesaik MA, Khan RA (2008) Natural honey modulates physiological glycemic response compared to simulated honey and D-glucose. J Food Sci 73(7):H165–H167

    Article  CAS  PubMed  Google Scholar 

  • Akhtar MS, Khan MS (1989) Glycemic responses to three different types of honeys given to normal and alloxandiabetic rabbits. J Pak Med Assoc 39(4):107–113

    CAS  PubMed  Google Scholar 

  • Alam F, Islam A, Gan SH, Khalil I (2014) Honey: a potential therapeutic agent for managing diabetic wounds. Evid Based Complement Alternat Med 2014:169130, 16 pages

    Article  PubMed  PubMed Central  Google Scholar 

  • Alles MS, de Roos NM, Bakx JC, van de Lisdonk E, Zock PL, Hautvast GA (1999) Consumption of fructooligosaccharides does not favorably affect blood glucose and serum lipid concentrations in patients with type 2 diabetes. Am J Clin Nutr 69:64–69. Molecules 17:263

    Google Scholar 

  • Alvarez-Sala Walther LA, Millan Nunez-Cortes J, de Oya OM (1996) The Mediterranean diet in Spain. Legend or reality? (II). Other elements in the Mediterranean diet: vegetables and fruits, fish. Evolution of the diet and cardiovascular diseases in Spain in the last decades. Rev Clin Esp 196:636–646

    CAS  PubMed  Google Scholar 

  • Alvarez-Suarez JM, Giampieri F, Cordero M et al (2016) Activation of AMPK/Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitochondrial function promoting wound healing. J Funct Foods 25:38–49

    Article  CAS  Google Scholar 

  • Al-Waili NS (2004b) Natural honey lowers plasma glucose, C-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: comparison with dextrose and sucrose. J Med Food 7:100–107

    Article  CAS  PubMed  Google Scholar 

  • Al-Waili N (2003a) Intrapulmonary administration of natural honey solution, hyperosmolar dextrose or hypo-osmolar distilled water to normal individuals and to patients with type 2 diabetes mellitus or hypertension: their effects on blood glucose level, plasma insulin and C-peptide, blood pressure and peaked expiratory flow rate. Eur J Med Res 8(7):295–303

    CAS  PubMed  Google Scholar 

  • Al-Waili NS (2003b) Identification of nitric oxide metabolites in various honeys: effects of intravenous honey on plasma and urinary nitric oxide metabolites concentration. J Med Food 6(4):359–364

    Article  CAS  PubMed  Google Scholar 

  • Al-Waili NS (2003c) Intravenous and intrapulmonary administration of honey solution to healthy sheep: effects on blood sugar, renal and liver function tests, bone marrow function, lipid profile, and carbon tetrachloride-induced liver injury. J Med Food 6:231–247

    Article  CAS  PubMed  Google Scholar 

  • Al-Waili NS (2004a) Investigating the antimicrobial activity of natural honey and its effects on the pathogenic bacterial infections of surgical wounds and conjunctiva. J Med Food 7(2):210–222

    Article  CAS  PubMed  Google Scholar 

  • Al-Waili NS, Saleeb N (2003) Honey increased nitric oxide and product in saliva of healthy volunteers in FASEB Conference, San Diego, pp 11–15

    Google Scholar 

  • American Diabetes Association (2014) Insulin basics. Archived from the original on 14 February 2014. Accessed 24 Apr 2014

    Google Scholar 

  • American Diabetes Association (2017) Classification and diagnosis of diabetes. Diabetes Care 40(Suppl 1):S11–S24. https://doi.org/10.2337/dc17-S005

    Article  Google Scholar 

  • Astwood K, Lee B, Manley-Harris M (1998) Oligosaccharides in New Zealand honeydew honey. J Agric Food Chem 46:4958–4962

    Article  CAS  Google Scholar 

  • Bahrami M, Ataie-Jafari A, Hosseini S, Foruzanfar MH, Rahmani M, Pajouhi M (2009) Effects of natural honey consumption in diabetic patients: an 8-week randomized clinical trial. Int J Food Sci Nutr 60(7):618–626

    Article  CAS  PubMed  Google Scholar 

  • Bantle JP (2009) Dietary fructose and metabolic syndrome and diabetes. J Nutr 139(6):1263S–1268S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaut M (2002) Relationship of prebiotics and food to intestinal microflora. Eur J Nutr 41:111–116

    Article  CAS  Google Scholar 

  • Bogdanov S, Jurendic T, Sieber R, Gallmann P (2008) Honey for nutrition and health: a review. J Am Coll Nutr 27:677–689

    Article  CAS  PubMed  Google Scholar 

  • Bornet F, Haardt MJ, Costagliola D, Blayo A, Slama G (1985) Sucrose or honey at breakfast have no additional acute hyperglycaemic effect over an isoglucidic amount of bread in type 2 diabetic patients. Diabetologia 28:213–217

    Article  CAS  PubMed  Google Scholar 

  • Busseroles J, Gueux E, Rock E (2002) Substituting honey for refined carbohydrates protects rats from hypertriglyceridemic and pro-oxidative effects of fructose. J Nutr 132:3379–3382

    Article  Google Scholar 

  • Cani PD, Joly E, Horsmans Y, Delzenne NM (2006b) Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 60:567–572

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R (2006a) Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55:1484–1490

    Article  CAS  PubMed  Google Scholar 

  • Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383

    Article  CAS  PubMed  Google Scholar 

  • Carris NW, Magness RR, Labovitz AJ (2019) Prevention of diabetes mellitus in patients with prediabetes. Am J Cardiol 123(3):507–512. https://doi.org/10.1016/j.amjcard.2018.10.032. PMC6350898

    Article  PubMed  Google Scholar 

  • Cash J (2014) Family practice guidelines, 3rd edn. Springer, New York, p 396. ISBN 978-0-8261-6875-7. Archived from the original on 31 October 2015

    Google Scholar 

  • Causey JL, Feirtag JM, Gallagher DD, Tungland BC, Slavin JL (2000) Effects of dietary inulin on serum lipids, blood glucose, and the gastrointestinal environment in hypercholesterolemic men. Nutr Res 20:191–201

    Article  CAS  Google Scholar 

  • Chepulis L, Starkey N (2008) The long-term effects of feeding honey compared with sucrose and a sugar-free diet on weight gain, lipid profiles and DEXA measurements in rats. J Food Sci 73(1):H1–H7

    Article  CAS  PubMed  Google Scholar 

  • Chepulis LM (2007) The effect of honey compared to sucrose, mixed sugars and a sugar free diet on weight gain in young rats. J Food Sci 72(3):S224–S229

    Article  CAS  PubMed  Google Scholar 

  • Chiang JL, Kirkman MS, Laffel LM, Peters AL (2014) Type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care 37(7):2034–2054. https://doi.org/10.2337/dc14-1140. PMC 5865481

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooper RA, Molan PC, Harding KG (1999) Antibacterial activity of honey against strains of Staphylococcus aureus from infected wounds. J R Soc Med 92(6):283–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Agnol R, von Poser GL (2000) The use of complex polysaccharides in the management of metabolic diseases: the case of Solanum lycocarpum fruits. J Ethnopharmacol 71:337–341

    Article  PubMed  Google Scholar 

  • Daubioul CA, Taper HS, De Wispelaere LD, Delzenne NM (2000) Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese zucker rats. J Nutr 130:1314–1319

    Article  CAS  PubMed  Google Scholar 

  • Deibert P, KOnig D, Kloock B, Groenefeld M, Berg A (2010) Glycaemic and insulinaemic properties of some German honey varieties. Eur J Clin Nutr 64(7):762–764

    Article  CAS  PubMed  Google Scholar 

  • Delmee E, Cani PD, Gual G, Knauf C, Burcelin R, Maton N, Delzenne NM (2006) Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sci 79:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Delzenne NM (2003) Oligosaccharides: state of the art. Proc Nutr Soc 62:177–182

    Article  CAS  PubMed  Google Scholar 

  • Diabetes Care (2009) Diabetes Care. 33:S3. doi:https://doi.org/10.2337/dc10-S003. PMC 2797388. Archived from the original on 13 January 2010. Accessed 29 Jan 2010

  • Englyst KN, Englyst HN (2005) Carbohydrate bioavailability. Br J Nutr 94:1–11

    Article  CAS  PubMed  Google Scholar 

  • Erejuwa OO, Gurtu S, Sulaiman SA, Ab Wahab MS, Sirajudeen KN, Salleh MS (2010) Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats. Int J Vitam Nutr Res 80(1):74–82

    Article  CAS  PubMed  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MS (2012a) Fructose might contribute to the hypoglycemic effect of honey. Molecules 17(12):1900–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MS (2012b) Hepatoprotective effect of Tualang honey supplementation in streptozotocin-induced diabetic rats. Int J Appl Res Nat Prod 4:37–41

    CAS  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MS, Salam SKN, Salleh S, Gurtu S (2011a) Comparison of antioxidant effects of honey, glibenclamide, metformin and their combinations in the kidneys of streptozotocin-induced diabetic rats. Int J Mol Sci 12(12):829–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KN, Salleh MS, Gurtu S (2011b) Hepatoprotective effect of Tualang honey supplementation in streptozotocin-induced diabetic rats. Int J Appl Res Nat Prod 4:37–41

    Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KNS, Salleh MS, Gurtu S (2011c) Glibenclamide or metformin combined with honey improves glycemic control in streptozotocin-induced diabetic rats. Int J Biol Sci 7:244–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erejuwa OO, Sulaiman SA, Wahab MS, Sirajudeen KNS, Salzihan MS (2009) Effects of Malaysian Tualang honey supplementation on glycemia, free radical scavenging enzymes and markers of oxidative stress in kidneys of normal and streptozotocin-induced diabetic rats. Int J Cardiol 137:S45

    Google Scholar 

  • Estevinho L, Pereira AP, Moreira L, Dias LG, Pereira E (2008) Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem Toxicol 46(12):3774–3779

    Article  CAS  PubMed  Google Scholar 

  • Ezz El-Arab AM, Girgis SM, Hegazy EM, Abd El-Khalek AB (2006) Effect of dietary honey on intestinal microflora and toxicity of mycotoxins in mice. BMC Complement Altern Med 6:6. https://doi.org/10.1186/1472-6882-6-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasanmade AA, Alabi OT (2008) Differential effects of honey on selected variables in alloxan-induced and fructose-induced diabetic rats. Afr J Biomed Res 11(20):191–196

    Google Scholar 

  • Feeney MJ (2004) Fruits and the prevention of lifestyle-related diseases. Clin Exp Pharmacol Physiol 31:S11–S13

    Article  PubMed  Google Scholar 

  • Fernandes J, Saudubray J, Berghe G (2013) Inborn metabolic diseases: diagnosis and treatment. Springer Science & Business Media, Berlin Heidelberg, p 4. ISBN 9783662031476

    Google Scholar 

  • Fiordaliso M, Kok N, Desager JP, Goethals F, Deboyser D, Roberfroid M, Delzenne N (1995) Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 30:163–167

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa T, Riby J, Kretchmer N (1991) Intestinal absorption of fructose in the rat. Gastroenterology 101(2):360–367

    Article  CAS  PubMed  Google Scholar 

  • Gheldorf N, Wang XH, Engeseth NJ (2003) Buckwheat honey increases serum antioxidant capacity in humans. J Agric Food Chem 51(5):1500–1505

    Article  CAS  Google Scholar 

  • Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR & Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    Google Scholar 

  • Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G et al (2010) Dietary prebiotics: current status and new definition. J Food Sci Technol 7:1–19

    Google Scholar 

  • Graef JW, Wolfsdorf JI, Greenes DS (2008) Manual of pediatric therapeutics. Lippincott Williams & Wilkins, New Delhi. ISBN 9780781771665. Metabolic Disorders: Medline Plus. www.nlm.nih.gov

    Google Scholar 

  • Gregory PC, McFadyen M, Rayner DV (1989) Relation between gastric emptying and short-term regulation of food intake in the pig. Physiol Behav 45(4):677–683

    Article  CAS  PubMed  Google Scholar 

  • Heber D (2004) Vegetables, fruits and phytoestrogens in the prevention of diseases. J Postgrad Med 50:145–149

    PubMed  Google Scholar 

  • Hur KY & Lee MS (2015) Gut microbiota and metabolic disorders. Diabet Metab J 39(3):198–203. https://doi.org/10.4093/dmj.2015.39.3.198. ISSN 2233-6079. PMC 4483604

  • International Diabetes Federation (2017) IDF diabetes Atlas, 8th edn. International Diabetes Federation, Brussels

    Google Scholar 

  • Katsilambros NL, Philippides P, Touliatou A, Georgakopoulos K, Kofotzouli L, Frangaki D, Siskoudis P, Marangos M, Sfikakis P (1988) Metabolic effects of honey (alone or combined with other foods) in type II diabetics. Acta Diabetol Lat 25:197–203

    Article  CAS  PubMed  Google Scholar 

  • Kellet GL, Brot-Laroche E, Mace OJ (2008) Sugar absorption in the intestine: the role of GLUT2. Ann Rev Nutr 28(1):35–54

    Article  CAS  Google Scholar 

  • Kitabchi AE, Umpierrez GE, Miles JM, Fisher JN (2009) Hyperglycemic crises in adult patients with diabetes. Diabetes Care 32(7):1335–1343. https://doi.org/10.2337/dc09-9032. PMC 2699725. Archived from the original on 2016-06-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krentz AJ, Bailey CJ (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65(3):385–411. https://doi.org/10.2165/00003495-200565030-00005

    Article  CAS  PubMed  Google Scholar 

  • Kwon S, Kim YJ, Kim MK (2008) Effect of fructose or sucrose feeding with different levels on oral glucose tolerance test in normal and type 2 diabetic rats. Nutr Res Pract 2(4):252–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavery LA, Higgins KR, Lanctot DR (2007) Preventing diabetic foot ulcer recurrence in high-risk patients: use of temperature monitoring as a self-assessment tool. Diabetes Care 30(1):14–20

    Article  PubMed  Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51(2):216–226

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Rizkalla SW, Alamowitch C, Boussairi A, Blayo A, Barry JL, Laffitte A, Guyon F, Bornet FR, Slama G (1996) Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. Am J Clin Nutr 63:939–945

    Article  CAS  PubMed  Google Scholar 

  • Luo J, van Yperselle M, Rizkalla SW, Rossi F, Bornet FR, Slama G (2000) Chronic consumption of short-chain fructooligosaccharides does not affect basal hepatic glucose production or insulin resistance in type 2 diabetics. J Nutr 130:1572–1577

    Article  CAS  PubMed  Google Scholar 

  • MacIsaac RJ, Jerums G, Ekinci EI (2018) Glycemic control as primary prevention for diabetic kidney disease. Adv Chronic Kidney Dis 25(2):141–148. https://doi.org/10.1053/j.ackd.2017.11.003

    Article  PubMed  Google Scholar 

  • Mathews KA, Binnington AG (2002) Wound management using honey. Compend Contin Educ Pract Vet 24(1):53–59

    Google Scholar 

  • Medline Plus (2018) Diabetes—eye care: Medline Plus Medical Encyclopedia. medlineplus.gov. Accessed 27 Mar 2018

  • Megherbi M, Herbreteau B, Faure R, Salvador A (2009) Polysaccharides as a marker for detection of corn sugar syrup addition in honey. J Agric Food Chem 57:2105–2111

    Article  CAS  PubMed  Google Scholar 

  • Meirelles CJ, Oliveira LA, Jordao AA, Navarro AM (2011) Metabolic effects of the ingestion of different fructose sources in rats. Exp Clin Endocrinol Diabetes 119(4):218–220

    Article  CAS  PubMed  Google Scholar 

  • Melmed S, Polonsky K, Larsen PR, Kronenberg H (2011) Williams textbook of endocrinology, 12th edn. Elsevier/Saunders, Philadelphia, pp 1371–1435. ISBN 978-1-4377-0324-5

    Google Scholar 

  • Molan PC (1999a) The role of honey in the management of wounds. J Wound Care 8(8):415–418

    Article  CAS  PubMed  Google Scholar 

  • Molan PC (1999b) Why honey is effective as a medicine. Its use in modern medicine. Bee World 80:80–92

    Article  Google Scholar 

  • Molan PC (2002) Re-introducing honey in the management of wounds and ulcers-theory and practice. Ostomy Wound Manage 48(11):28–40

    PubMed  Google Scholar 

  • Moran TH, McHugh PR (1981) Distinction among three sugars in their effects on gastric emptying and satiety. Am J Physiol Regul Integr Comp Physiol 241(1):R25–R30

    Article  CAS  Google Scholar 

  • National Diabetes Clearinghouse (NDIC) (2011) National Diabetes Statistics 2011. U.S. Department of Health and Human Services. Archived from the original on 17 April 2014. Accessed 22 Apr 2014

    Google Scholar 

  • Nemoseck TM, Carmody EG, Furchner-Evanson A (2011a) Honey promotes lower weight gain, adiposity, and triglycerides than sucrose in rats. Nutr Res 31(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Nemoseck TM, Carmody EG, Furchner-Evanson A, Gleason M, Li A, Potter H, Rezende LM, Lane KJ, Kern M (2011b) Honey promotes lower weight gain, adiposity, and triglycerides than sucrose in rats. Nutr Res 31:55–60

    Article  CAS  PubMed  Google Scholar 

  • Parnell JA& Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89:1751–1759

    Google Scholar 

  • Prieto PG, Cancelas J, Villanueva-Peñacarrillo ML, Valverde I (2004) Plasma D-glucose, D-fructose and insulin responses after oral administration of D-glucose, D-fructose and sucrose to normal rats. J Am Coll Nutr 23(5):414–419

    Article  CAS  PubMed  Google Scholar 

  • Rasad H, Dashtabi A, Khansari M et al (2014) The effect of honey consumption compared with sucrose on blood pressure and fasting blood glucose in healthy young subjects. Global J Med Res Stud 1(4):117–121

    Google Scholar 

  • Rippe RS, Irwin JM (eds) (2010) Manual of intensive care medicine, 5th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, p 549. ISBN 978-0-7817-9992-8

    Google Scholar 

  • Rockefeller JD (2015) Diabetes: symptoms, causes, treatment and prevention. CreateSpace Publishing, Charleston, SC. ISBN 978-1-5146-0305-5

    Google Scholar 

  • Rother KI (2007) Diabetes treatment—bridging the divide. N Engl J Med 356(15):1499–1501. https://doi.org/10.1056/NEJMp078030. PMC 4152979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saedi E, Gheini MR, Faiz F, Arami MA (2016) Diabetes mellitus and cognitive impairments. World J Diabetes 7(17):412–422. https://doi.org/10.4239/wjd.v7.i17.412. PMC 5027005

    Article  PubMed  PubMed Central  Google Scholar 

  • Samanta A, Burden AC, Jones GR (1985) Plasma glucose responses to glucose, sucrose, and honey in patients with diabetes mellitus: an analysis of glycaemic and peak incremental indices. Diabet Med 2:371–373

    Article  CAS  PubMed  Google Scholar 

  • Sanz ML, Polemis N, Morales V, Corzo N, Drakoularakou A, Gibson GR, Rastall RA (2005) In vitro investigation into the potential prebiotic activity of honey oligosaccharides. J Agric Food Chem 53:2914–2921

    Article  CAS  PubMed  Google Scholar 

  • Shoback DG, Gardner D (eds) (2011) Chapter 17. Greenspan’s basic & clinical endocrinology, 9th edn. McGraw-Hill Medical, New York. ISBN 978-0-07-162243-1

    Google Scholar 

  • Singh N, Armstrong DG, Lipsky BA (2005) Preventing foot ulcers in patients with diabetes. JAMA 293(2):217–228

    Article  CAS  PubMed  Google Scholar 

  • Soylu M, AtayoÄŸlu T, Incaç N, Silici S (2015) Glycemic index values of multifloral Turkish honeys and effect of their consumption on glucose metabolism. J Apic Res 54(3):155–162

    Article  Google Scholar 

  • Srinivasan K, Viswanad B, Asrrat L, Kaul CL, Ramaro P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52(4):313–320

    Article  CAS  PubMed  Google Scholar 

  • Thanabalasingham G, Owen KR (2011) Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ 343:d6044. https://doi.org/10.1136/bmj.d6044

    Article  CAS  PubMed  Google Scholar 

  • Thibault L (1994) Dietary carbohydrates: effects on self-selection, plasma glucose and insulin and brain indoleaminergic systems in rat. Appetite 23(3):275–286

    Article  CAS  PubMed  Google Scholar 

  • Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L (2014) The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383(9922):1084–1094. https://doi.org/10.1016/S0140-6736(13)62219-9

    Article  PubMed  Google Scholar 

  • Ushijima K, Riby JE, Fujisawa T, Kretchmer N (1995) Absorption of fructose by isolated small intestine of rats is via a specific saturable carrier in the absence of glucose and by the disaccharide-related transport system in the presence of glucose. J Nutr 125(8):2156–2164

    Article  CAS  PubMed  Google Scholar 

  • Van Loo J, Cummings J, Delzenne N, Englyst H, Franck A, Hopkins M, Kok N, Macfarlane G, Newton D, Quigley M et al (1999a) Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br J Nutr 81:121–132

    Article  PubMed  Google Scholar 

  • Van Loo J, Franck A, Roberfroid M (1999b) Functional food properties of non-digestible oligosaccharides. Br J Nutr 82:329

    Article  PubMed  Google Scholar 

  • Van Schaftingen E, Vandercammen A (1989) Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes. FEBS J 179(1):173–177

    Google Scholar 

  • Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2163–2196. https://doi.org/10.1016/S0140-6736(12)61729-2. PMC 6350784

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (1999). Definition, diagnosis and classification of diabetes mellitus and its complications. Archived (PDF) from the original on 8 Mar 2003

    Google Scholar 

  • WHO (2006) Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation (PDF). WHO, Geneva, p 21. ISBN 978-92-4-159493-6

    Google Scholar 

  • WHO (2013a) Diabetes Fact sheet N°312″. Archived from the original on 26 August 2013

    Google Scholar 

  • WHO (2013b) The top 10 causes of death Fact sheet N°310″. Archived from the original on 30 May 2017

    Google Scholar 

  • WHO (2014a) Diabetes programme. Archived from the original on 26 April 2014. Accessed 22 Apr 2014

    Google Scholar 

  • WHO (2014b) About diabetes. Archived from the original on 31 March 2014

    Google Scholar 

  • WHO (2019) Diabetes mellitus. Accessed 23 Mar 2019

    Google Scholar 

  • Yaghoobi N, Al-Waili N, Ghayour-Mobarhan M, Parizadeh SM, Abasalti Z, Yaghoobi Z, Yaghoobi F, Esmaeili H, Kazemi-Bajestani SM, Aghasizadeh R et al (2008b) Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP and body weight compared with sucrose. Sci World J 8:463–469

    Article  CAS  Google Scholar 

  • Yaghoobi N, Al-Waili N, Ghayour-Mobarhan M et al (2008a) Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP and body weight compared with sucrose. Sci World J 8:463–469

    Article  CAS  Google Scholar 

  • Yamashita K, Itakura M, Kawai K (1984) Effects of fructo-oligosaccharides on blood glucose and serum lipids in diabetics subjects. Nutr Res 4:961–966

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, H.A. et al. (2020). Scope of Honey in Diabetes and Metabolic Disorders. In: Rehman, M.U., Majid, S. (eds) Therapeutic Applications of Honey and its Phytochemicals . Springer, Singapore. https://doi.org/10.1007/978-981-15-7305-7_9

Download citation

Publish with us

Policies and ethics