Skip to main content

Biophysics of Consciousness: A Scale-Invariant Acoustic Information Code of a Superfluid Quantum Space Guides the Mental Attribute of the Universe

  • Chapter
  • First Online:
Rhythmic Oscillations in Proteins to Human Cognition

Part of the book series: Studies in Rhythm Engineering ((SRE))

Abstract

In this chapter, we postulate an integral concept of information processing in the universe, on the basis of a new biophysical principle, coined the generalized music (GM)-scale of EMF frequencies. Meta-analyses of current biomedical literature revealed the presence of a distinct pattern of discrete EMF frequency bands in a wide range of animate and non-animate systems. The underlying algorithm of harmonic solitonic waves provided a novel conceptual interface between living and non-living systems being of relevance for the areas of brain research as well as biological evolution. We hold that nature is guided by resonating quantum entities related to quantum vacuum fluctuations of an imminent zero-point energy (ZPE) field, also regarded as a superfluid quantum space (SQS). Since the whole human organism, including the brain is embedded in this dynamic energy field, a pilot wave guided supervenience of brain function is conceived. Conversely, the brain may write discrete informational states into the ZPE field as individual memory traces. Both information fluxes may be related to a holofractal memory workspace, associated with, but not reducible to the brain, that operates as a scale-invariant mental attribute of reality. Our concept, therefore, addresses the earlier postulated “hard problem” in consciousness studies. The proposed field-receptive workspace, integrates past and (anticipated) future events and may explain overall ultra-rapid brain responses as well as the origin of qualia. Information processing in the brain is shown to be largely facilitated by propagation of hydronium (proton/water) ions in aqueous compartments. The hydronium ions move freely within a hexagonally organized H2O lattice, providing a superconductive integral brain antenna for receiving solitonic wave information according to the Schrödinger wave equation. The latter quantum process enables an ultra-rapid soliton/biophoton flux that may orchestrate overall brain binding and the creation of coherent conscious states. In a cosmological context, we envision a scale-invariant information processing, operating through a toroidal/wormhole operator at the interface of our 4D world and acoustic phase space. We submit that the resulting meta-language is instrumental in a partially guided evolution and the creation of first life. The central message provided here describes intrinsic cosmic connectivity that is mirrored in the human brain. This implies that sentience exists on infinite scales, on the basis of an electromagnetic signature of the universe which reveals a musical master code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meijer DKF, Geesink JH (2017) Consciousness in the Universe is scale invariant and implies the event horizon of the human brain. NeuroQuantology 15:41–79 https://www.researchgate.net/publication/320267484_Consciousness_in_the_Universe_is_Scale_Invariant_and_Implies_an_Event_Horizon_of_the_Human_Brain

  2. Meijer DKF (2019a) Universal consciousness. Collective evidence on the basis of current physics and philosophy of mind. ResearchGate. https://www.researchgate.net/publication/328538224_Universal_Consciousness_Collective_Evidence_on_the_Basis_of_Current_Physics_and_Philosophy_of_Mind_Part_1

  3. Meijer DKF, Geesink JH (2019b) Life and consciousness are guided by a semi-harmonic EM background field. NeuroQuantology 17(Issue 4):37–44. https://www.neuroquantology.com/index.php/journal/article/view/2074

  4. Meijer DKF (2018) Processes of science and art modeled as a holoflux of information using toroidal geometry. Open J Philos 8:365–400. https://pdfs.semanticscholar.org/cddd/d1975ad29ee4cbbe653a933f204f5120f640.pdf?_ga=2.106736387.1244523350.1576662063-1419431810.1574855531, https://doi.org/10.4236/ojpp.2018.84026

  5. Goswami A (1990) Consciousness in quantum physics and the mind-body problem. J Mind Behav 11(1):75–96

    Google Scholar 

  6. Kastrup B (2018) The Universe in consciousness. J Conscious Stud 25:125–155

    Google Scholar 

  7. Kastrup B (2017a) There is an unconscious, but it may well be conscious. Eur J Psychol 1841–0413

    Google Scholar 

  8. Kastrup B (2017b) Making sense of the Mental Universe. Pilos Cosmol 19:33–49

    Google Scholar 

  9. Bohm D (1980) Wholeness and the implicate order. Routledge & Kegan Paul, London

    Google Scholar 

  10. Forshaw SD (2016) Memory of a universal mind. Galactic structures and their existence as cognitive operators in an emerging universally conscious machine. Research Gate 309209078

    Google Scholar 

  11. Forshaw SD (2016) The third state. Towards a quantum theory of consciousness. NeuroQuantology 14:49–61

    Google Scholar 

  12. Rovelli C (2016) Meaning = Information + Evolution. arXiv:1611.02420v1 [physics.hist-ph]

  13. Chalmers D (1995) Facing up to the problem of consciousness. J Conscious Stud 2(3):200–219. http://consc.net/papers/facing.pdf

  14. Pereira A, Ricke H (2009) What I consciousness. Towards a preliminary definition. J Conscios Stud 28–45(16). https://www.researchgate.net/profile/Alfredo_Pereira_Junior/publication/233663656_What_is_Consciousness_Towards_a_Preliminary_Definition/links/0046352182781aa057000000/What-is-Consciousness-Towards-a-Preliminary-Definition.pdf

  15. Tononi G, Boly M, Massimini M, Koch C (2016) Integrated information theory: from consciousness to its physical substrate. Nat Rev Neurosci 1–12

    Google Scholar 

  16. Churchland (1995) The engine of reason, the seat of the soul: a philosophical journey into the brain. MIT Press, Cambridge. ISBN 0262531429

    Google Scholar 

  17. Zeki S, Bartels A (1999) Toward a theory of visual consciousness. Conscious Cogn 8(2):225–259

    Article  Google Scholar 

  18. Meijer DKF (2013) Information: what do you mean? Syntropy J 3:1–49. https://www.researchgate.net/publication/275017053_Information_What_Do_You_Mean

  19. Meijer DKF (2012) The information universe. On the missing link in concepts on the architecture of reality. Syntropy J 1:1–64. https://www.researchgate.net/publication/275016944_Meijer_D_K_F_2012_The_Information_Universe_On_the_Missing_Link_in_Concepts_on_the_Architecture_of_Reality_Syntropy_Journal_1_pp_1-64

  20. Barrow JD, Tipler FJ (1988) The anthropic cosmological principle. Oxford University Press

    Google Scholar 

  21. Davies PCW (2007) The implications of a cosmological information bound for complexity. Quantum Inf Nat Phys Law. http://power.itp.ac.cn/~mli/pdavies.pdf

  22. Grandpierre A (2014) Biologically organized quantum vacuum and the cosmic origin of cellular life. In: Phenomenology of space and time book 1. The forces of the cosmos and the ontopoietic genesis of life. Analecta Husserliana 116:107–133

    Google Scholar 

  23. Grandpierre A et al (2013) Multidisciplinary approach to mind and consciousness. NeuroQuantology 11:607–617

    Article  Google Scholar 

  24. Alfonso-Faus A (2011) Cosmology, holography, the brain and the quantumvacuum. https://arxiv.org/ftp/arxiv/papers/1102/1102.0443.pdf

  25. Alfonso-Faus A (2013) Fundamental principle of information-to-energy conversion. https://arxiv.org/ftp/arxiv/papers/1401/1401.6052.pdf

  26. Bérut AB, Arakelyan A, Petrosyan A, Ciliberto S, Dillenschneider R, Lutz E (2012) Experimental verification of Landauer’s principle linking information and thermodynamics. Nat Lett 483:187–190

    Google Scholar 

  27. Toyabe S et al (2010) Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality. Lett Nat Phys I Vol 6, December

    Google Scholar 

  28. Zizzi P (2006) Consciousness and logic in a quantum-computing universe. In: The emerging physics of consciousness. The frontiers collection. Springer, Berlin, pp 457–481, chapter 14, https://doi.org/10.1007/3-540-36723-3_14

  29. Schrödinger (1967) What is life? Cambridge Press. Cambridge. https://archive.org/details/WhatIsLife_201708

  30. Vannini A (2009) A syntropic model of consciousness. Syntropy J 1:109–169

    Google Scholar 

  31. Vannini A (2008) Quantum models of consciousness. Quantum Biosyst 1(2):165–184

    Google Scholar 

  32. Geesink HJ (2020) Informational code of biomolecules and its building blocks: quantum coherence versus decoherence, submitted to Quantum Biosystems

    Google Scholar 

  33. Geesink JH, Jerman I, Meijer DKF (2019b) Water: the cradle of life in action, water in cells is guided by coherent quantum frequencies as revealed in pure water. In the press in Water Journal. https://www.researchgate.net/publication/331976119_Water_the_cradle_of_life_in_action_cellular_architecture_is_guided_by_coherent_quantum_frequencies_as_revealed_in_pure_water

  34. Aharonov Y, Popescu S, Tollaksen J (2010) A time-symmetric formulation of quantum mechanics. Phys Today 27–32

    Google Scholar 

  35. Ellis GFR (2012) Top down causation and emergence: some comments on mechanisms. J Roy Soc Interface Focus 2:126–140

    Article  Google Scholar 

  36. Boyle L, Finn K, Turok N (2018) CPT-symmetric universe. Phys Rev Lett 121:251301

    Article  Google Scholar 

  37. Gaffney L, Butler P, Scheck M et al (2013) Studies of pear-shaped nuclei using accelerated radioactive beams. Nature 497:199–204. https://doi.org/10.1038/nature12073

    Article  Google Scholar 

  38. Chang Y-F (2007) Negative matter, repulsion force, dark matter, phantom and theoretical test. arXiv:0705.2908 [physics.gen-ph]

  39. Cramer J (1988) An overview of the transactional interpretation. Int J Theor Phys 27:227

    Article  MathSciNet  Google Scholar 

  40. King CC (2003) Chaos, Quantum-transactions and Consciousness, NeuroQuantology 1(1):129–162

    Google Scholar 

  41. Wheeler JA, Feynman (1994) At home in the universe, New York Institute of Physics

    Google Scholar 

  42. Cramer J (2005) A farewell to copenhagen? Analog, December

    Google Scholar 

  43. Merali Z (2010). Back from the future, Discover Magazine, August 26, 2010

    Google Scholar 

  44. Wilczek F (2008) The lightness of being. Mass, ether, and the unification of forces. New York: Basic Books

    Google Scholar 

  45. De Loof A (2016) The cell’s self-generated “electrome”: the biophysical essence of the immaterial dimension of life? Commun Integr Biol 9(5):e1197446

    Article  Google Scholar 

  46. Nelson E (1967) Dynamical theories of Brownian motion. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  47. Griffin DR (1997). Parapsychology, philosophy, and spirituality: A postmodern exploration, (SUNY Series in Constructive Postmodern Thought), State University of New York Press

    Google Scholar 

  48. Skrbina D (2017) Panpsychism in the west MIT press Ltd ISBN13 9780262534062

    Google Scholar 

  49. Strawson G (2009) Mental reality (2nd ed.). Cambridge, MA: MIT Press. http://dx.doi.org/10.7551/mitpress/9780262513104.001.0001bina

  50. Bohm DF, Hiley BJ (1993) The undivided universe. An ontological interpretation of quantum theory

    Google Scholar 

  51. Williams GR (2019) Quantum mechnics, metaphysics and Bohm’s implicate order. Mind Matter 17:155–185

    Google Scholar 

  52. Geesink JH, Meijer DKF (2016a) Quantum wave information of life revealed: an algorithm for electromagnetic frequencies that create stability of biological order, with implications for brain function and consciousness. NeuroQuantology 14:106–125. file:///C:/Users/Dick/Documents/911-2447-1-PB.pdf

    Google Scholar 

  53. Geesink JH, Meijer DKF (2017) Electromagnetic frequency patterns that are crucial for health and disease reveal a generalized biophysical principle: the GM scale. Quantum Biosys 8:1–16. https://www.academia.edu/35199978/Electromagnetic_Frequency_Patterns_that_are_Crucial_for_Health_and_Disease_reveal_a_Generalized_Biophysical_Principle_the_GM_scale

  54. Geesink JH, Meijer DKF (2018a) Evidence for a guiding principle in quantum physics. Quantum Biosyst 9:1–7. http://www.quantumbiosystems.org/admin/files/QBS%209%20(1)%201-17%20(2018).pdf

  55. Geesink JH, Meijer DKF (2018b) A harmonic-like electromagnetic frequency pattern organizes non-local states and quantum entanglement in both EPR studies and life systems. J Modern Phys 9:898–924. https://www.academia.edu/36384076/A_SemiHarmonic_Frequency_Pattern_Organizes_Local_and_Non-Local_States_by_Quantum_Entanglement_in_both_EPR-Studies_and_Life_Systems

  56. Geesink JH, Meijer DKF (2018c) Semi-harmonic scaling enables calculation of masses of elementary particles of the standard model. J Modern Phys 9:925–947. https://pdfs.semanticscholar.org/e576/b8da181ff3e598618dfe440bb5c5904f61a2.pdf

  57. Geesink JH, Meijer DKF (2018d) Mathematical structure of the GM life algorithm that may reflect Bohm’s implicate order. J Modern Phys 9:851–897. https://www.scirp.org/journal/PaperInformation.aspx?PaperID=83681

  58. Geesink JH, Meijer DKF (2019a) Superconductive properties in animate and inanimate systems are predicted by a novel biophysical quantum algorithm. Quantum Biosyst. https://www.academia.edu/38224924/Superconductive_properties_in_animate_and_inanimate_systems_are_predicted_by_a_novel_biophysical_quantum_algorithm

  59. Geesink JH, Meijer DKF, Jerman I (2019c) Clay minerals: primordial biofield and fractal quantum information network? submitted to Quantum Biosystems

    Google Scholar 

  60. Geesink JH, Meijer DKF (2016b) Bio-soliton model that predicts non-thermal electromagnetic frequency bands, that either stabilize living cells. Electromagn Biol Med 36(4):357–378. https://doi.org/10.1080/15368378.2017.1389752

  61. Meijer DKF, Geesink JH (2018a) Favourable and unfavourable EMF frequency patterns in cancer: perspectives for improved therapy and prevention. J Cancer Ther 9:188–230. https://www.scirp.org/journal/PaperInformation.aspx?PaperID=82944

  62. Meijer DKF, Geesink JH (2016) Phonon guided biology. architecture of life and conscious perception are mediated by toroidal coupling of phonon, photon and electron information fluxes at discrete eigenfrequencies. NeuroQuantology 14(4):718–755. http://www.neuroquantology.com/index.php/journal/article/view/985

  63. Meijer DKF, Geesink JH (2018b) Guided folding of life’s proteins in integrate cells with holographic memory and GM-biophysical steering. Open J Biophys 8:17–154. https://file.scirp.org/pdf/OJBIPHY_2018071615175972.pdf

  64. Muehsam D, Ventura C (2014) Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob Adv Health Med 3(2):40–55. https://doi.org/10.7453/gahmj.2014.008

    Article  Google Scholar 

  65. Hamblin MR (2017) Photobiomodulation for traumatic brain injury and stroke. J Neurosci Res 96:731–743. https://doi.org/10.1002/jnr.24190

    Article  Google Scholar 

  66. Ferris, Andrew J, Olsen Murray K, Cavalcanti Eric G, Davis Matthew J (2008) Detection of continuous variable entanglement without coherent local oscillators. Phys Rev A 78:060104

    Article  Google Scholar 

  67. Chladni EFF (1980) Entdeckungen über die theorie des klanges [Discoveries in the Theory of Sound], Leipzig, 1787:pp. 78,Reprint, Leipzig

    Google Scholar 

  68. Adamatzky A (2013) Game of life on phyllosilicates: gliders, oscillators and still life. Phys Lett 377:597–1605

    Article  MathSciNet  Google Scholar 

  69. Hashizume H (2012) Role of clay minerals in chemical evolution and the origins of life. Life Phys Lett 377:597–1605. https://doi.org/10.5772/50172

  70. Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem Ref Data 36(2):389

    Article  Google Scholar 

  71. Selfham AM (2007) Universal spectrum for DNA base C + G frequency distribution in human chromosomes 1 to 24. World Journal of Modeling and Simulation; and on ResearchGate

    Google Scholar 

  72. Rouleau N, Dotta BT (2014) Electromagnetic fields as structure-function zeitgebers in biological systems: environmental orchestrations of morphogenesis and consciousness. Front Integr Neurosci 8:84

    Article  Google Scholar 

  73. Huelga SF, Plenio MB (2013) Vibrations, quanta and biology. Int J Mod Phys B 10:1735–1754

    Google Scholar 

  74. Lambert N, Chen YN, Cheng YC, Li CM, Chen GY, Franco N (2013) Quantum biology. Nat Phys 9(1):10–18. https://doi.org/10.1038/nphys2474

    Article  Google Scholar 

  75. Lloyd S (2011) Quantum coherence in biological systems. J Phys.: Conf Ser 302:012037. https://doi.org/10.1088/1742-6596/302/1/012037

  76. Marais A, Adam B, Ringsmuth AK, Ferretti M, Gruber JM, Hendrikx R, Schuld M, Smith Samuel L, Sinayskiy I, Kru TPJ, Petruccione F, van Grondell R (2018) The future of quantum biology. J R Soc Interface 15:20180640. https://doi.org/10.1098/rsif.2018.0640

    Article  Google Scholar 

  77. Marais A et al (2018) The future of quantum biology. J R Soc Interface 15:0640

    Article  Google Scholar 

  78. Sonderkamp T, Geesink JH, Meijer DKF (2019) Statistical analysis and prospective application of the GM-scale, a semi-harmonic EMF scale proposed to discriminate between “coherent” and “decoherent” EM frequencies on life conditions. Quantum Biosyst 10(2):33–51. https://www.quantumbionet.org/quantumbiosystems/

  79. Hand K, Yates E (2017) Teraherz: dictating frequencies of life. Do macromolecular vibrational modes impose thermal limitations on terrestrial life? J R Soc Interface 14:073

    Google Scholar 

  80. Siegel PH (2004) Teraherz technology in biology and medicine. IEEE transactions on microwave theory and techniques, vol 52, no 10

    Google Scholar 

  81. Muller H (2017) Chain systems of harmonic quantum oscillators as a fractal model ofmatter and global scaling in biophysics. Progr Phys 13:231–233

    Google Scholar 

  82. Thut WK (2020) Water frequencies and resonance. https://www.slideshare.net/MagazineontheSpot/water-frequenties-and-resonantie-walter-thut

  83. Maret K (2020) Microwaves and radiofrequency radiation affect coherence in living organisms, available from the Dove Health Alliance through maret@cruzio.com

    Google Scholar 

  84. Verlinde EP, Zurek KM (2019). Observational signatures of quantum gravity in interferometers. https://arxiv.org/abs/1902.08207

  85. Bischof M, Del Giudice E (2013) Communication and emergence of collective behavior in living organisms. A quantum approach. Mol Biol Int 1. https://doi.org/10.1155/2013/987549

  86. Jerman I (2016). The origin of life from quantum vacuum, water and polar molecules. Am J Modern Phys. 5(4–1):34-43. http://article.sciencepublishinggroup.com/html/10.11648.j.ajmp.s.2016050401.16.html

  87. Pang XF, Chen S, Wang X, Zhong L (2016) Influences of electromagnetic energy on bio-energy transport through protein molecules in living systems and its experimental evidence. Int J Mol Sci 17(8):1130

    Article  Google Scholar 

  88. Preto J (2016) Classical investigation of long range coherence in biological systems. Chaos

    Google Scholar 

  89. Melkikh AV, Meijer DKF (2018) On a generalized Levinthal’s paradox: the role of long- and shortrange interactions in complex bio-molecular reactions, including protein and DNA folding. Progr Biophys Molecular Biology. 132:57–79. https://www.sciencedirect.com/science/article/pii/S0079610717300846

  90. Popp FA, Quao G, Ke-Hsuen L (1994) Biophoton emission: experimental background and theoretical approaches. Modern Phys Lett 8:21, 22

    Google Scholar 

  91. Popp FA, Chang JJ, Herzog A, Yan Z, Yan Y (2002) Evidence of non-classical (squeezed) light in biological systems. Phys Lett A 293(1, 2):98–102

    Google Scholar 

  92. Davies PCW (2014) Does quantum mechanics play a non-trivial role in life? BioSystems 2014(78):69–79

    Google Scholar 

  93. Walker SI, Davies PCW (2013) The algorithmic origin of life. J R Soc Interf https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2012.0869

    Google Scholar 

  94. Meijer DKF, Geesink JH (2018c) Is the fabric of reality guided by a semi-harmonic, toroidal background field? Int J Struct Comput Biol. https://pdfs.semanticscholar.org/43a5/dbabe7ce98c06d45451e2329a19327c42dbc.pdf

  95. Montagnier L, Aïssa J, Capolupo A, Craddock TJA, Kurian P, Lavallee C, Polcari A, Romano P, Tedeschi A, Vitiello G (2017) Water bridging dynamics of polymerase chain reaction in the gauge theory paradigm of quantum fields. Water 9:339

    Google Scholar 

  96. Turner P, Notalle A (2016) New Ab initio approach to the development of high temperature superconducting materials. J Supercond Nov Magn. 29(12):3113–3118. https://doi.org/10.1007/s10948-016-3756-z

  97. Turner P (2019) New insights into the physical processes that underpin cell division and differentiation, submitted

    Google Scholar 

  98. Marjieh R, Sabag E, Hayt A (2016) Light amplification in semiconductor-superconductorstructures. New J Phys 023019

    Google Scholar 

  99. Hunt T, Schooler JW (2019) The easy part of the hard problem: a resonance theory of consciousness. Front Hum Neurosci 13:378. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834646/

  100. Hunt T (2017) How deep is the neuron? A conversation with Anirban Bandyopadhyay about new advances in neuroscience. Society for the Advancement of Metadarwinism. http://metadarwinism.com/how-deep-is-the-neuron/

  101. Sepehri HG (2017) A mathematical model for DNA. Int J Geometric Methods Mod Phys 14(11): 1750152

    Google Scholar 

  102. Hameroff S, Tuszynsky J (2010) Quantum states in protein assemblies: The essence of Life?. http://www.quantumconsciousness.org/sites/default/files/PaperIntlSocOptEngineeringQuantumStatesinProteinsandProteinAssemblies.pdf

  103. Wigner EP (1983) Remarks on the mind-body problem. In: Wheeler J, Wojciech Z (eds) Quantum theory and measurement. Princeton University Press, Princeton, p 99

    Google Scholar 

  104. Mikheenko P (2018) Possible superconductivity in brain. J Supercond Novel Magn 32:1121–1134

    Article  Google Scholar 

  105. Cope FW (1975) A review of the applications of solid state physics concepts to biological systems. J Biol Phys 3(1):1–41.https://drive.google.com/file/d/1ZWecGBR9NyIR_rNmycangi5T0rKgnuxM/view?usp=sharing

  106. Brizhik L (2015) Biological effects of pulsating magnetic fields: role of solitons; arxiv.org/pdf/1411.6576

    Google Scholar 

  107. Fröhlich F, McCormick DA (2013) Endogenous electric fields may guide neocortical network activity. Neuron 67:129–143. https://doi.org/10.1016/j.neuron.2010.06.005

  108. Hammerschlag R, Levin M, Mc Craty R, Bat BA, Ives JA, Lutgendorf SK, Oschman JL (2015) Biofield physiology: a framework for an emerging discipline. Glob Adv Health Med 4:35–41. https://doi.org/10.7453/gahmj.2015.015.suppl

    Article  Google Scholar 

  109. Jibu M, Yasue K (1993) Introduction to quantum brain dynamics. In: Nature, Cognition and System ed, Carvall

    Google Scholar 

  110. Umezawa H (1993) Advanced field theory. The American Institute of Physics Press, New York

    Google Scholar 

  111. Vitiello G (2001) My double unveiled: the dissipative quantum model of brain. John Benjamins Publishing

    Google Scholar 

  112. Del Giudice E, Tedeschi A (2009) Water and autocatalysis in living matter. Electromagn Biol Med 28:46–52

    Article  Google Scholar 

  113. Del Giudice E, Spinetti PR, Tedeschi A (2010) Water dynamics at the root of metamorphosis in living organisms. Water 2:566–586

    Article  Google Scholar 

  114. Lundholm IV, Rodilla H, Wahlgren WY, Duelli A, Bourenkov G, Vukusic J, Friedman R, Stake J, Schneider T, Katona G (2015) Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal. Struct Dyn 054702. http://dx.doi.org/10.1063/1.4931825

  115. Nardecchia I, Torres J, Lechelon M, Giliberti V, Ortolani M, Nouvel P, Gori M, Donato I, Preto J, Varani L, Sturgis J, Pettini M (2017) Out-of-equilibrium collective oscillation as phonon condensation in a model protein. https://arxiv.org/pdf/1705.07975.pdf

  116. Nardecchia I, Spinelli L, Preto J, Gori M, Floriani E, Jaeger S, Ferrier P, Pettini M (2014) Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: numerical study. Phys Rev E 90. Article ID: 022703. https://doi.org/10.1103/PhysRevE.90.022703

  117. Yamasaki et al (2018) Actin polymerization is activated by teraherz irradiation. Nat Sci Rep 8:9990

    Google Scholar 

  118. Plankar M, Jerman I, Krasovec R (2011) On the origin of cancer: can we ignore coherence? Progr Biophys Molecul Biol 106:380–390

    Google Scholar 

  119. Yinnon TA, Elia V (2013) Dynamics in perturbed very dilute aqueous solutions: theory and experimental evidence. Int J Mod Phys B 27(05):1350005

    Article  MathSciNet  Google Scholar 

  120. Vattay G, Kauffman SA (2015) Quantum criticality at the origin of life. arXiv:1502.06880 [cond-mat.dis-nn]

  121. Wolchover N (2019) The universal law that aims time’s arrow https://www.quantamagazine.org/the-universal-law-that-aims-times-arrow-20190801

  122. Abrams DM, Strogatz SH (2004) Chimera states for coupled oscillators. Phys Rev Lett 93:174102

    Article  Google Scholar 

  123. Motter AE, Yang Y (2017) The unfolding and control of network cascades. Phys Today 70(1):32. https://doi.org/10.1063/pt.3.3426

    Article  Google Scholar 

  124. Toykka LA (2014) Self-intrference of a toroidal Bose-Enstein condensate. New J Phys 16:043011

    Article  Google Scholar 

  125. Collini E, Cathy Y, Wilk K E, Curmi PMG, Brumer, Scholes PGD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature Nature 463(7281):644–7, 2010 Feb 4, https://doi.org/10.1038/nature08811

  126. Engel GS (2011) Quantum coherence in photosynthesis. Science Direct, Procedia Chem 3(2011):222–231

    Article  Google Scholar 

  127. Romero E, Augulis R, Novoderezhkin VI, Marco Ferretti M, Jos Thieme J, Zigmantas D, van Grondelle R (2014) Quantum coherence in photosynthesis for efficient solar energy conversion. Nat Phys 10(9):676–682. https://doi.org/10.1038/nphys3017, 2014 Sept 1

  128. Dolce D (2017) Introduction to the quantum theory of elementary cycles: the emergence of space, time and quantum. arXiv:1707.00677v1 [physics.gen-ph]

  129. Preparata G (1992) Coherence in QCD and QED In: Bressani T, Minetti B, Zenoni A (eds) Common problems and ideas of modern physics. World Scientific, Singapore, p 3

    Google Scholar 

  130. Sheldrake M, Sheldrake R (2017) Determinants of Faraday wave patterns in water samples oscillated vertically at a range of frequencies from 5–200 Hz. Water 9:1–27

    Google Scholar 

  131. Johnson K (2009) Water buckyball. Terahertz vibrations in physics, chemistry, biology, and cosmology. https://arxiv.org/ftp/arxiv/papers/0902/0902.2035.pdf

  132. Johnson M (2009) Toward a new ontology of brain dynamics: neural resonance + neuroacoustics. Qualia Research Institute. Available from: https://opentheory.net/2009/11/toward-a-new-ontology-of-brain-dynamics-neural-resonanceneuroacoustics/

  133. Kolesnikov LA, Anovitz I, Mamontov E, Podlesnyak A, Ehlers G (2014) Strong anisotropic dynamics of ultra-confined water. J Phys Chem B 118(47):13414–13419. https://doi.org/10.1021/jp505355b

  134. Arani R, Bono I, Giudice ED, Preparata G (1995) QED coherence and the thermodynamics of water. Int J Mod Phys B 9:1813–1842

    Article  Google Scholar 

  135. Carniello TN, Vares DAE, Persinger MA (2015) Quantitative support for water as the conduit of interaction for universal entanglement. J Consciousness Explor Res 6(9):738–749

    Google Scholar 

  136. Del Giudice E, De Ninno A, Fleischmann M, Mengoli G, Milani M, Talpo G, Vitiello G (2005) Coherent quantum electrodynamics in living matter. Electromagn Biol Med 24:199–210

    Article  Google Scholar 

  137. Ganeshan S, Ramirez R, Fernandez-Serra MV (2013) Simulation of quantum zero point effects in water using frequency dependent thermostat. https://arxiv.org/abs/1208.1928

  138. Sen S, Gupta K, Coey JMD (2015) Mesoscopic structure formation in condensed matter due to vacuum fluctuations. Phys Rev B 92:155115

    Article  Google Scholar 

  139. Sen S, Gupta KS (2017) Observable consequences of zero-point enegy. Mod Phys Lett A 32:1750217

    Article  Google Scholar 

  140. Thayer AM, Pines A (1987) Zero-field NMR. Accounts of Chemical Research, pp 47–53, 20 February

    Google Scholar 

  141. Bouchard F et al (2015) Observation of quantum recoherence of photons by spatial propagation. Nat Sci Rep 5:15330

    Google Scholar 

  142. Chin AW et al. (2013) The role of non-equilibrium vibrational structures in electronic coherence and re-coherence in pigment-protein complexes. Nat Phys

    Google Scholar 

  143. Kauffman SA (2008) Reinventing the sacred: a new view of science, reason, and religion. Basic Books

    Google Scholar 

  144. Kauffman SA (2009) Towards a post reductionist science. The Open University. Kastrup B (2017) Self-transcendence correlates with brain function impairment. J Cognit Neuroethics 4(3):33–42. https://philpapers.org/rec/KASSCW

  145. Moldonado CE (2018) A quantum coherence-recoherence-based model of reality. NeuroQuantology 16:44–48

    Google Scholar 

  146. Fröhlich H (1968) Long-range coherence and energy storage in biological systems. Int J Quantum Chem 2:641–649

    Google Scholar 

  147. Bush JWM (2015) Pilot wave hydrodynamcs. Annu Rev Fluid Mech 47:26992

    Article  Google Scholar 

  148. Brown PA (2019) Water: the new science behind the universal conduit. http://www.laserpetcare.com/wp-content/uploads/2014/10/Brown_Water-The-New-Science-Behind-the-Universal-Conduit_AHVMA_09_14.pdf

  149. Brown W (2019) Unified physics and the entanglement nexus of awareness. NeuroQuantology 17:40–52

    Article  Google Scholar 

  150. Tsenkova R, Muncan J, Pollner B, Kovacs Z (2018) Essentials of aquaphotomics and its chemometrics approaches. Front Chem. 6, 1 August, Article 363 www.frontiersin.org

  151. Vegt W (2015) The world beyond superstrings. The origin of electric charge and magnetic spin.https://osf.io/6e847/https://www.amazon.com/Beyond-Superstrings-Origin-Electric-Magnetic/dp/9402179631

  152. Haramein N, Brown WD, Val Baker A (2016) The unified spacememory network: from cosmogenesis to consciousness. NeuroQuantology. 14(4):657–671. https://doi.org/10.14704/nq.2016.14.4.961

  153. Jensen K, Karch A (2013) The holographic dual of an EPR pair has a wormhole. www.mpp.mpg.de/conf/ggd2013/files/slides/jensen.pdf

  154. Zagoskin AM, Chipoline A, Il’ichev E, Johansson JR, Nori F (2015) Toroidal qbits: naturally-decoupled quiet artificial atoms. Nat Sci Rep 5:16934

    Google Scholar 

  155. Kirillov AA, Savelov EP (2012) On scattering of electromagnetic waves by a wormhole. Phys Lett B 710(4, 5):516–518

    Google Scholar 

  156. Marquet P (2012) Traversable space-time wormholes sustained by the negative energy electromagnetic field. http://zelmanov.ptep-online.com/papers/zj-2012-05.pdf

  157. Musha T, Caligiuri LM (2015) Possible existence of superluminal photons inside microtubules and the resulting explanation for brain mechanisms. Am J Opt Photonics. 3(5):54–57

    Article  Google Scholar 

  158. Lefferts M (2019) Cosmometry. Exploring the holofractal nature of the cosmos. Cosmometria Publishing, New York

    Google Scholar 

  159. Dehaene S, Lau H, Koulder S (2017) What is consciousness, and do machines have it? Science 358:486–492

    Article  Google Scholar 

  160. Görnitz T (2012) Quantum theory as universal theory of structures. Essentially from Cosmos to Consciousness. http://cdn.intechopen.com/pdfs-wm/28316.pdf

  161. Görnitz T (2016) A century of quantum theory-time for a change in thinking, versus the popular belief that material building blocks are the basis of the reality. https://www.researchgate.net/publication/301895324_A_century_of_quantum_theory_-_time_for_a_change_in_thinking_Versus_the_popular_belief_that_material_building_blocks_are_the_basis_of_the_reality

  162. Meijer DKF (2015) The universe as a cyclic organized information system. An essay on the worldview of john wheeler. NeuroQuantology 1:1–40. http://www.neuroquantology.com/index.php/journal/article/view/798/693

  163. Meijer DKF, Raggett S (2014) Quantum physics in consciousness studies. The Quantum Mind Extended. review, 180 pp. http://quantum-mind.co.uk/wp-content/uploads/2014/11/Quantum-Ph-rev-def-2.pdf

  164. Wolf-Meyer M, Cochran C (2015) Minor science. Unifying minor sciences and minor literatures: Reproduction and revolution in quantum consciousness as a model for the anthropology of science. Anthropological Theor 15:407–433. https://journals.sagepub.com/doi/abs/10.1177/1463499615615739

  165. Kozyrev SV (1997) Ultrametric space of free coherent states. TMF Theoret Math Phys 110(2):265–266

    Article  MathSciNet  MATH  Google Scholar 

  166. Tozzi A, Peters JF (2015) Brain activity on a hypersphere. Quant Biol Neuron Cognit arXiv:1512.00036 [q-bio.NC]

  167. Knierim JJ, Zhang K (2012) Attractor dynamics of spatially correlated neural activity in the limbic system. Ann Rev Neurol. https://doi.org/10.1146/2012/062111-150351

  168. Atasoy S, Deco G, Kringelbach ML, Pearson J (2018) Harmonic brain modes: a unifying framework for linking space and time in brain dynamics. Neuroscientist. 24(3):277–293. https://doi.org/10.1177/1073858417728032. Epub Sep 1. 2017

  169. Amiot E (2013) The torii of phases. In: Yust J, Wild J, Burgoyne JA (eds) Mathematics and computation in music. MCM 2013. Lecture Notes in Computer Science, pp 7937

    Google Scholar 

  170. Bjerve A (2016) The fractal-holographic universe. http://holofractal.net/the-holofractographic

  171. Papasimakis N, Fedotov VA, Savinov V, Raybould TA, Zheludev NI (2016) Electromagnetic toroidal excitations in matter and free space. Nat Mater 15:263–271. https://doi.org/10.1038/nmat4563

    Article  Google Scholar 

  172. Tsytovich VN, Morfill GE, Fortov VE, Gusein-Zade NG, Klumov BA, Vladimirov SV (2007) From plasma crystals and helical structures towards inorganic living matter. New J Phys 9

    Google Scholar 

  173. Verlinde EP (2011) On the origin of gravity and the laws of newton; JHEP. arXiv:1001.0785 Bibcode:2011JHEP…04..029 V. https://doi.org/10.1007/jhep04(2011)029

  174. ‘t Hooft GA (2007) Mathematical theory for deterministic quantum mechanics. J Phys: Conf Ser 67

    Google Scholar 

  175. ‘t Hooft GA (2016) Fundamental theories of physics. The cellular automaton interpretation of quantum mechanics, pp 185

    Google Scholar 

  176. Batiz Z, Milovanovic D (2017) Quantum holography and agency: toward a formalism of schema QD. NeuroQuantology 15:45–59

    Google Scholar 

  177. Sieb RA (2016) Human conscious experience is four-dimensional and has a neural correlate, modeled by einstein’s special theory of relativity. NeuroQuantology 14:630–644

    Article  Google Scholar 

  178. Lloyd NJ (2007) Black hole computers. https://www.scientificamerican.com/…/black-hole-computers-2007

  179. Keppler JA (2013) A new perspective on the functioning of the brain and the mechanisms behind conscious processes. Front Psychol Theor Philos Psychol 1–6

    Google Scholar 

  180. Keppler JA (2016) On the universal mechanism underlying conscious systems and the foundations for a theory of mind. Open J Philos 6:346–367

    Google Scholar 

  181. Keppler JA (2020) The common basis of memory and consciousness: understanding the brain as a write-read head interacting with an omnipresent background field. Front Psychol 10:2968

    Article  Google Scholar 

  182. László E (2007) The Akashic Field. Dutton, New York

    Google Scholar 

  183. László E (2012). Cosmic symphony: a deeper look at quantum consciousness. http://www.huffingtonpost.com/ervin-laszlo/cosmic-symphony-a-deeper_b_532315.html

  184. Nation P, Jahansson J, Blencowe M, Nori F (2012) Stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits. Rev Modern Phys 81(1):1

    Article  Google Scholar 

  185. Setterfield B (2002) Exploring the vacuum. J Theor. http://www.setterfield.org/exploringvacuum.htm

  186. Haramein N, Rauscher EA (2016) Collective coherent oscillation plasma modes in surrounding media of black holes and vacuum structure—quantum processes with considerations of spacetime torque and coriolis forces. The Resonance Project Foundation. www.theresonanceproject.org

  187. Loll R (2011) Quantum gravity at the planck scale: getting a hold on spacetime foam. http://physics.technion.ac.il/~conf/Waves/RenateLoll.pdf

  188. Haggard HM, Rovelli C (2014) Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling, 6 Jul 2014. arXiv:1407.0989v2 [gr-qc]

  189. Maldacena J, Susskind K (2013) Cool horizons for entangled black holes. High Energy Phys Theor (hep-th). doi: http://arxiv.org/pdf/1306.0533v2.pdf

  190. Pourhasan R, Afshordi N, Mann RB (2013) Out of the white hole. The holographic origin for the big bang. arXiv:1309.1487v2 [hep-th]. 22 Sep

  191. Susskind l (2016) Copenhagen vs Everett, Teleportation, and ER = EPR

    Google Scholar 

  192. Wheeler JA, Feynman (1994) At home in the Universe. New York Institute of Physics, New York

    Google Scholar 

  193. Henry RC (2005) The mental Universe. Nature 436(7):29

    Article  Google Scholar 

  194. Smetham GP (2010) Quantum mind matrix of the Universe. J Conscious Explor Res 1:864–887

    Google Scholar 

  195. Hawking S, Mlodinow L (2010) The grand design. Bantam Press, New York

    Google Scholar 

  196. Mays RG, Mays SB (2011) The theory of mind and brain that solves the hard problem of consciousness. https://www.selfconsciousmind.com/TheoryOfMindAndBrain-12052011.pdf

  197. Desmond T (2014) Psyche = singularity: a comparison of Carl Jung’s transpersonal psychology and Leonard Susskind’s holographic string theory. Thesis Publ ProQuest, UMT Press

    Google Scholar 

  198. Kowal JP, Deshpande BP (2016) It’s the other way around: matter is a form of consciousness and death is the end of illusion of life in te world. J Conscious Explor Res 7:1154–1208

    Google Scholar 

  199. Darmos SOA (2019) Quantum gravity and the role of consciouness in physics. https://www.academia.edu/34051559/Quantum_Gravity_and_the_Role_of_Consciousness_in_Physics

  200. Amoroso RL, Di Biase F (2016) Unified field mechanics & its application: elucidating the objective character of experience. God J 7:59–81

    Google Scholar 

  201. Maurer LH (2010) How unconditioned consciousness, infinite information, potential energy and time created our univese. J Conscious Exploat Res 1:610–624

    Google Scholar 

  202. Popławski NJ (2010) Radial motion into an einstein-rosen bridge. Phys Lett B 687(2, 3):110. https://doi.org/10.1016/j.physletb.2010.03.029

  203. Dunajzki M (2009) Twistor theory and differential equations. J Phys A: Math Theor 42:404004

    Article  MathSciNet  Google Scholar 

  204. Melkikh AV, Khrennikov A (2017) Quantum-like model of partially directed evolution. Prog Biophys Mol Biol 125:36–51

    Article  Google Scholar 

  205. Anjamrooz et al (2011) The cellular universe: a new cosmological model based on the holographic principle. Int J Phys Sci 6:2175–2183

    Google Scholar 

  206. Werner G (2010) Fractals in the nervous system: conceptual implications for theoretical neuroscience. Front Physiol 1, art 15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059969/pdf/fphys-01–00015.pdf

  207. Afshordi N et al (2017) From planck data to planck era: observational tests of holographic cosmology. Phys Rev Lett 118(4):041301. arXiv:1607.04878 [astro-ph.CO]

  208. Picato D (2017) A spacetime discretization and black holes properties in a holographic representation. arXiv:1703.10795 [hep-th]

  209. Val Baker AK, Haramein FN, Airol O (2019) The electron and the holographic mass solutiom. Phys Essays 32:2

    Article  Google Scholar 

  210. Rezzolla L, Yoshida S, Maccarone TJ, Zanotti O (2003) A new simple model for high-frequency quasi-periodic oscillations in black hole candidates. Mon Not R Astron Soc 344(3):L37–L41

    Article  Google Scholar 

  211. Whittle M (2010) Big bang acoustics: sound from the newborn Universe. http://people.virginia.edu/~dmw8f/BBA_web/index_frames.html

  212. Luminet JP (2007) Geometry and topology in relativistic cosmology. arXiv:0704.3374 [astro-ph]

  213. Sbitnev VI (2019) Quaternion algebra on 4D superfluid quantum space-time: gravitomagnetism. Found Phys 49(2):107–143. https://arxiv.org/pdf/1901.09098.pdf

  214. Opher R, Pelinson A (2005) Decay of vacuum energy into cosmic microwave background photons. Mon Not Astron Soc 362:167–170

    Article  Google Scholar 

  215. Ho CM, Scherrer RJ (2013) Anapole dark matter. Phys Lett B 722:341–346. https://www.sciencedirect.com/science/article/pii/S0370269313003286

  216. Wang KW, Fung PCW, Chow WK (2019) 5D model theory for the creating of life forms. J Modern Phys 10:1548–1565

    Article  Google Scholar 

  217. Thorvaldsen S (2014) Unique hoyle state of the carbon atom. Proceedings of the Conferences on the Dialogue between Science and Theology November, pp. 6–11

    Google Scholar 

  218. Mc Craty R et al (2017 Synchronization of human nervous system rhythms with geometric activity in human subjects. Int J Environ Res 14:770. Public Health

    Google Scholar 

  219. Kozwolski M, Marciak-Kozwolski J (2017) Quantum model of consciousness. J Conscios Explor Res 8:1–17

    Google Scholar 

  220. Persinger MA, St-Pierre LS (2015) The physical bases to consciousness: implications of convergent quantifications. J Syst Integr Neurosc 1:55–64

    Article  Google Scholar 

  221. Keppler JA (2012) Conceptual framework for consciousness based on a deep understanding of matter. Philos Stud 2(10):689–703

    Google Scholar 

  222. Bernstein P (2015) Intuition: what science says (so far) about how and why intuition works. In: Buccheri R et al (eds) Endophysics, time, quantum and the subjective. World Scientific Publishing, Singapore

    Google Scholar 

  223. Jahn RG, Dunne BJ (2004) Sensors, filters, and the source of reality. J Sci Explor 18(4):547–570

    Google Scholar 

  224. Rousseau D (2011) Understanding spiritual awareness in terms of anomalous information access. Open Inf Sci J 3:40–53

    Google Scholar 

  225. Schwartz JM, Stapp H, Beauregard M (2005) Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction. Phil Trans R Soc B 360:13091327

    Article  Google Scholar 

  226. Tammiettto M, de Gelder B (2010) Neural basis of the non-conscious perception of emotional signals. Nat Rev Neurosci 1–13

    Google Scholar 

  227. Bieberich E (2012). Introduction in the practicality principle of consciousness and the sentyon postulate. Cognit Comput 4:13–28

    Google Scholar 

  228. Gardiner J, Overall R, Marc J (2010) The fractal nature of the brain: EEG data suggests that the brain functions as a “quantum computer” in 5×8 Dimensions. NeuroQuantology 8:137–141

    Article  Google Scholar 

  229. Zheng J-m, Wei-Chun C, Khijniak E, Khijniak EJ, Pollack GH (2006) Adv Colloid Interface Sci 127:29

    Google Scholar 

  230. Grof S (1987) Beyond the brain; birth, death and transcendence in psychotherapy. State University of New York Press, New York

    Google Scholar 

  231. Persinger MA, Murugan NJ, Karbowski LM (2015) Combined spectral resonances of signalling proteins’ amino acids in the ERK-MAP pathway reflect unique patterns that predict peak photon emissions and universal energies. Int Lett Chem Phys Astron 43:10–25

    Article  Google Scholar 

  232. Persinger MA (2008) On the possible representation of the electromagnetic equivalents of all human memory within the earth’s magnetic field: implications for theoretical biology. Theor Biol Insights 1:3–11

    Google Scholar 

  233. Hameroff S, Tuszynsky J (2010) Quantum states in protein assemblies: The essence of Life http://www.quantumconsciousness.org/sites/default/files/PaperIntlSocOptEngineeringQuantumStatesinProteinsandProteinAssemblies.pdf

  234. John ER (2001) A field theory of consciousness. Conscious Cogn 10:184–213

    Article  Google Scholar 

  235. McFadden J (2007) Conscious electromagnetic (CEMI) field theory. NeuroQuantology 5(3):262–270

    Article  Google Scholar 

  236. Pockett S (2012) The electromagnetic field theory of consciousness: a testable hypothesis about the characteristics of conscious as opposed to non-conscious fields. J Conscious Stud 19(11, 12):191–223

    Google Scholar 

  237. Carlson CR (2020) A frequency ratio account of temporal atomism. https://www.researchgate.net/publication/340065335_A_Frequency_Ratio_Account_of_Temporal_Atomism_revised

  238. Walling PT (2020) An update on dimensions of consciousness. Proc Bayl Univ Med Cent 33(1):126–130

    Google Scholar 

  239. Walling P, Hicks KN (2003) Dimensions of Consciousness. BUMC Proc 16:162–166

    Google Scholar 

  240. Gabella M (2006) The Randall-Sundrum Model. https://wwwthphys.physics.ox.ac.uk/people/MaximeGabella/rs.pdf

  241. Beichler JE (2012c) The neurophysical basis of mind and consciousness: an electromagnetic model of the neuron. A presentation at the annual spring meeting of the OSAPS. Ohio State 68 University. http://www.neurocosmology.net

  242. Carter PJ (2014) Consciousness and perception in higher-dimensional quantum space-time. NeuroQuantology 12:46–75

    Article  Google Scholar 

  243. Martin F, Carminati F, Carminati G (2013) Quantum information theory applied to unconscious and consciousness. NeuroQuantology 11:16–33

    Article  Google Scholar 

  244. Baaquie BE, Martin F (2005) Quantum psyche. Quantum field theory of the human psyche. NeuroQuantology 1:7–42

    Google Scholar 

  245. Luminet JP (2016) The holographic Universe. https://arxiv.org/abs/1602.07258

  246. Sirag SP (1993) Consciousness, a hyperspace view. http://www.williamjames.com/Theory/Consciousness.pdf

  247. Smythies J (2003) Space, time & consciousness. J Conscious Stud 10(3):47–5

    Google Scholar 

  248. Wesson PS (2014) Looking for the fifth dimension. Phys Int 5:5–7

    Article  Google Scholar 

  249. Tozzi A, Peters JF (2016) Symmetries, information and monster groups before and after the big bang. Information 7:73

    Article  Google Scholar 

  250. Tozzi A, Peters JF (2016) Towards a fourth spatial dimension of brain activity. Cogn Neurodyn 10(3):189–199 PMID: 27275375

    Article  Google Scholar 

  251. Samardzija N (2018) From spheroids to globotoroids. Int J Sci Eng Investig 7:99–102

    Google Scholar 

  252. Hut P (2017) Mind and magnetic monopoles: matter, mind and magic. https://www.yhousenyc.org/yhouse-blog/all-posts/2017–09-11/mind-and-magnetic-monopoles

  253. Peterson JPS, Sarthour RS, Souza AM, Oliveira I S, Goold J, Modi K, Soares-Pinto DO, Céleri LC (2016) Experimental demonstration of information to energy conversion in a quantum system at the Landauer limit. Proc R Soc A-Math Phys Eng. https://royalsocietypublishing.org/doi/10.1098/rspa.2015.0813

  254. Aharonov Y, Popescu S, Rohrlich D, Skrzypczyk P (2013) Quantum cheshire cats. New J Phys 15:1–8

    Google Scholar 

  255. Atmanspacher H (2011) Quantum approaches to consciousness. Stanford Encycl Philos 1–33

    Google Scholar 

  256. Adams B, Petruccioni (2019) Quantum effects in the brain: a review. arXiv:1910.08423 [q-bio.NC]

  257. Tegmark M (2015) Consciousness as a state of matter. http://arxiv.org/abs/1401.1219

  258. Hagan S, Hameroff SR, Tuszynski JA (2002) Quantum computation in brain microtubules: Decoherence and biological feasibility

    Google Scholar 

  259. Bernroider G (2003) Quantum neurodynamics and the relationship to conscious experience. NeuroQuantology 1:163–168

    Google Scholar 

  260. Stapp H (2012) Reply to a critic: mind efforts, quantum zeno effect and environmental decoherence. NeuroQuantology 10(4):601–605

    Article  Google Scholar 

  261. Hu H, Wu M (2013) The relationship between human consciousness & universal consciousness. Sci GOD J 4:209–225

    Google Scholar 

  262. Seth A (2018) Consciousness: the last 50 years (and the next). Brain and Neurosci Adv 2, pp. 1–6. ISSN 2398-2128

    Google Scholar 

  263. Bókkon I, D’Angiulli A (2009) Emergence and transmission of visual awareness through optical coding in the brain: a redox molecular hypothesis on visual mental imagery. Biosci Hypotheses 2:226–232. https://doi.org/10.1016/j.bihy.2009.01.009

  264. Dotta BT (2013) Ultraweak photon emission in cells: coupling to molecular pathways, applied magnetic fields, and potential non-locality, thesis

    Google Scholar 

  265. Wang CH, Bokkon I, Dai J, Antal I (2010) Spontaneous and visible light-induced ultra-weak photon emission from rat eyes. Brain Res https://doi.org/10.1016/jbrauinres.2010.10.077

  266. Rahnama M, Tuszynski J, Bokkon I, Cifra M, Sardar P, Salari V (2011) Emission of biophotons and neural activity of the brain. J Integr Neurosci 10(1):65–88. https://doi.org/10.1142/s0219635211002622

    Article  Google Scholar 

  267. Bókkon I, Mallick BN, Tuszynski JA (2013) Near death experience: a multidisciplinary hypothesis. Front Hum Neurosci 7:1–11

    Google Scholar 

  268. Georgiev DD, Glazebrook JF (2018) The quantum physics of synaptic communication via the SNARE protein complex. Prog Biophys Mol Biol 135:16–29

    Article  Google Scholar 

  269. Bessler P (2019) Some macroscopic applications of Georgiev’s quantum information model. NeuroQuantology 17:29–35

    Article  Google Scholar 

  270. Flohr H (1998) On the mechanism of action of anaesthetic agents. In Hameroff SR, Kaszniak AW, Scott AC (eds) Toward a science of consciousness II. MIT Press, pp 2–459

    Google Scholar 

  271. Adamski A (2019) The historical aspect of the development of quantum consciousness at the beginning of the XXI century. Gerontol Geriatrics Stud 4. GGS.000588.2019

    Google Scholar 

  272. Annila A (2013) On the character of consciousness. Front Syst Neurosci. arXiv:1308.4802v3 [hep-th] 7

  273. Meijer DKF (2014) The extended brain: cyclic information flow. In A quantum physical realm. NeuroQuantology 12:180–200. http://www.neuroquantology.com/index.php/journal/article/view/754/651

  274. Bohm D, Hiley BJ (1993) The undivided universe. An ontological interpretation of quantum theory. Routledge, London

    Google Scholar 

  275. Caligiuri LM (2015) Zero-point field, QED coherence, living systems and biophoton emission. Open J Biophys 5:21–34

    Article  Google Scholar 

  276. Simon C (2019) Can quantum physics help solve the hard problem of consciousness? A hypothesis based on entangled spins an photons. J Conscious Stud 26(5, 6):204–218

    Google Scholar 

  277. Libet B (1994) A testable field theory of mind-brain interaction. J Conscious Stud 1:119–126

    Google Scholar 

  278. Tonegawa S, Pignatelli M, Roy DS, Ryan TJ (2015) Memory engram storage and retrieval. Current Opin Neurobiol 35:101–109

    Article  Google Scholar 

  279. Currivan J (2017) The cosmic hologram. Information at the Center of Creation. Inner Traditions, Rochester Vermont, USA

    Google Scholar 

  280. St. John TJ (2018) The holomorphic process—understanding the holographic nature of reality. Arch Phys Res 9:17–44

    Google Scholar 

  281. Linden RFJ (2009) The universe as a multi-dimensional fractal. https://bruceleeeowe.files.wordpress.com/2009/10/fractal-universe.pdf

  282. Chiatti L (2007) Fantappié-Arcidiacono theory of relativity versus recent cosmological evidences: a preliminary comparison. https://arxiv.org/ftp/physics/papers/0702/0702178.pdf

  283. Galloni GM (2012) The heresy of Fantappié and Teillard and the converging revolution. Syntropy 2(1):79–84

    Google Scholar 

  284. Meijer DKF (2019b) Anticipation of of afterlife as based on current physics of information. Available on ResearchGate, https://www.researchgate.net/publication/336531043_The_Anticipation_of_Afterlife_as_Based_on_Current_Physics_of_Information

  285. Radin D (1997) The conscious Universe. The Scientific Truth of Psychic Phenomena, New York, HarperEdge

    Google Scholar 

  286. Beichler JE (2012b) The neurophysics of mind and consciousness: a theoretical model of emergence, evolution, psi and survival. A presentation made at the SMN/SSE conference at An Grianan AEC, Ireland. http://www.neurocosmology.net

  287. Greyson B (2010) Seeing dead people not known to have died: “peak in darien” experiences. Anthropol Hum 35(2):159–171

    Article  Google Scholar 

  288. Lake J (2015) The near-death experience: implications for a more complete theory of consciousness. Quantum Biosys 6:131–138

    Google Scholar 

  289. Van Gordon et al (2018) Meditation-induced near-death experiences: a 3-year longitudinal study. Mindfullness 9:1794–1806

    Google Scholar 

  290. Pereira C, Reddy JSK (2016) Near-death cases, non-locality/disembodiment via quantum mediated consciousness. J Conscious Explor Res 7:951–968

    Google Scholar 

  291. Sullivan PR (1995) Contentless consciousness and information processing theories of mind. Philos, Psychiatry & Psych 2:51–59

    Google Scholar 

  292. Davies PCW (2009) The quantum life. Phys World pp 24–28

    Google Scholar 

  293. Bitbol M, Luisi PL (2004) Autopoiesis with or without cognition: defining life at its edge. J R Soc Interface 1(1):99–107 [PubMed: 16849156]

    Article  Google Scholar 

  294. Carhart-Harris RL, Friston KJ (2019) REBUS and the anarchic brain: towards a unified model of brain action of psychedelics. Pharmacol Rev 71:316–344

    Article  Google Scholar 

  295. Feuillet L, Dufour H, Pelletier J (2007) Brain of a white-collar worker. The Lancet 370(9583):262

    Article  Google Scholar 

  296. Forsdyke DR (2014) Long-term memory: scaling of information to brain size. Front Hum Neurosci 8:1–4

    Google Scholar 

  297. Mashour GA, Alkira M (2013) Evolution of consciousness: phylogeny, ontogeny and emergence from general Anesthesia. PNAS 110:10357–10364

    Article  Google Scholar 

  298. Nahn et al (2017) Discrepancy between cerebral structure and cognitive functioning: A review. J Nerv Mental Dis 205(12):967–972

    Article  Google Scholar 

  299. Majorek MB (2012) Does the brain cause conscious experience? J Consciousness Stud 19(3)

    Google Scholar 

  300. Cleeremans A (2011) The radical plasticity thesis: How the brain learns to be conscious. Front Psychol 2, Pp. 86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110382/

  301. Wolf FA (1989) On the quantum physical theory of subjective antedating. J Theor Biol 136:13–19

    Article  MathSciNet  Google Scholar 

  302. Wolf FA (1985) The quantum physics of consciousness: towards a new psychology. Integr Psychiat 3(235):4–25

    Google Scholar 

  303. Kastrup B (2019) Conflating abstraction with emperical observation: the false mind-matter dichotomy. Constr Found 13(3):341–360

    Google Scholar 

  304. Melkikh AV (2019) Thinking as a quantum phenomenon. Biosystems 176:32–40

    Article  Google Scholar 

  305. Melkikh AV (2020) Theory of directed evolution. Lambert Academic Publishing

    Google Scholar 

  306. Pesic P (2014) Music and making modern science. MIT Press. https://mitpress.mit.edu/books/music-and-making-modern-science

  307. Merrick RS (2009) Interference: a grand scientific musical theory (self-published). Fairview, Texas. ISBN 978-0-615-20599-1

    Google Scholar 

  308. Merrick RS (2010) Harmonically guided evolution. In: Proceedings of the natural philosophy alliance, vol 7

    Google Scholar 

  309. Sanyal S, Banerjee A, Sangupta, Ghosh D (2016) Chaotic brain, musical mind—a nonlinear neurocognitive physics based study. J Neurol Neurosci 7(63):1–10

    Google Scholar 

  310. Kotchoubey B, Pavlov YG, Kleber B (2015) Music as research and rehabilitation od disorders of consciousness: physiological and neurophysiological foundations. Front Psychol 6:1763

    Article  Google Scholar 

  311. Martorell AJ, Paulson AL, Suk HJ, Abdurrob F, Drummond GT, Guan W, Young JZ, Kim DN, Kritskiy O, Barker SJ, Mangena V, Prince SM, Brown EN, Chung K, Boyden ES, Singer AC, Tsai LH (2019) Multi-sensory gamma stimulation ameliorates Alzheimer’s-Associated pathology and improves cognition. Cell 177(2):256–271.e22. Epub 14 Mar 2019

    Google Scholar 

  312. Koelsch S (2009) The neuroscientific perspective on music therapy. Ann NYAcad Sci 1169:374–384

    Article  Google Scholar 

  313. Hartwich K, Pollak T, Klausberger T (2009) Distinct firing patterns of identified basket and dendrite-targeting interneurons in the prefrontal cortex during hippocampal theta and local spindle oscillations. J Neurosci 29(30):9563–9574

    Google Scholar 

  314. Gramowski-Voß A, Schwertle HJ, Pielka AM, Schultz L, Steder A, Jügelt K, Axmann J, Pries W (2015) Enhancement of cortical network activity in vitro and promotion of GABA nergic neurogenesis by stimulation with an electromagnetic field with a 150 MHz carrier wave pulsed with an alternating 10 and 16 Hz modulation. Front Neurol 6:158. https://doi.org/10.3389/fneur.2015.00158

  315. Pitkänen M (2016) What could be the physical origin of Pythagorean Scale? http://tgdtheory.fi/public_html/articles/geesinkscale.pdf

  316. Heyning EC (2017) Star music, The ancient idea of cosmic music as a philosophical paradox. Thesis, Canterbury Christ Church University. https://www.academia.edu/35078706/Star_Music_The_ancient_idea_of_cosmic_music_as_a_philosophical_paradox

  317. Auffray C et al (2020) Progress in integrative systems biology, physiology and medicine: towards a scale relative biology. Eur Phys J A 56:88. https://link.springer.com/article/10.1140/epja/s10050–020-00090-3

  318. Agrawal et al (2018) Fractal information theory (FIT) derived geometry musical language (GML) for brain-inspired hypercomputing. In: Soft computing: theories and application, Advances in intelligent systems and computing, vol 584. Springer Nature, Singapore Pte Ltd

    Google Scholar 

  319. Sahu S, Ghosh S, Ghosh B, Aswani K, Hirata K, Fujita D, Bandyopadhyay A (2013) Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens Bioelectron 47(2013):141–148. https://doi.org/10.1016/j.bios.2013.02.050

    Article  Google Scholar 

  320. Sahu S, Ghosh S, Fujita D, Bandyopadhyay A (2015) Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Sci Rep 4(1). https://doi.org/10.1038/srep07303

  321. Agrawal L, Sahu S, Ghosh S, Shiga T, Fujita D, Bandyopadhyai A (2016) Inventing atomic resolution scanning dielectric microscopy to see a single protein complex operation live at resonance in a neuron without touching 0r adulterating the cell. J Integr Neurosci 15:435–462

    Article  Google Scholar 

  322. Purwins H, Blankertz B, and Obermayer K (2007) Toroidal models in tonal theory and pitchclass analysis tonal theory for the digital age. Comput Musicol 15:73–98

    Google Scholar 

  323. Tozzi A, Peters JF (2017) A symmetric approach elucidates multisensory information integration. Information 8:4

    Article  Google Scholar 

  324. Tozzi A, Peters J (2017) Plasma-like brain: collective movements in the extracellular nervous spaces. https://www.researchgate.net/publication/304777768_PLASMALIKE_BRAIN_COLLECTIVE_MOVEMENTS_IN_THE_EXTRACELLULAR_NERVOUS_SPACES

  325. Van De Bogart WG, Forshaw S (2015) Re-constructing memory using quantized electronic music and a “Toridion byte” quantum algorithm: creating images using zero logic quantum probabilistic neural networks (ZLQNN). https://www.researchgate.net/publication/281480809

  326. Handler G (2012) Asteroseismology, Copernicus Astronomical Center/arXiv.org, 23 Sept 2019. Available from: https://arxiv.org/pdf/1205.6407.pdf

  327. Stark G (2017) Adventures in acoustic cosmology. Royal Astronomical Society. Available from: http://www.binarydust.org/author/admin/

  328. Agrawal L, Chhajed R, Ghosh S, Ghosh B, Kanad R, Sahu S, Daisuke Fujita D, Bandyopadhyay A (2017) Fractal Information Theory (FIT)-derived geometric musical language (GML) for brain-inspired hypercomputing. Adv Intell Syst Comput 584:343–372. https://doi.org/10.1007/978-981-10-5699-4_33

  329. Savelyev IV et al (2019) On the existence of the DNA resonance code and its possible mechanistic connection to the neural code. NeuroQuantology 17:106–121

    Article  Google Scholar 

  330. Savelyev I, Myakishev-Rempel M (2019b) Possible traces of resonance signaling in the genome. http://vixra.org/pdf/1908.0282v2.pdf

  331. Crawford MA, Thabet M, Wang Y (2018) An introduction to the theory on the role of pi-electrons of docosahexanenoic acid in brain function. Quantum Brain OCL 25:A402

    Google Scholar 

  332. Giesa T, Spivak DI, Buehler MJ (2011) Reoccurring patterns in hierarchical protein materials and music: the power of analogies. BioNanoScience 1(4)

    Google Scholar 

  333. Qin Z, Buehler MJ (2019) Analysis of the vibrational and sound spectrum of over 100,000 protein structures and application in sonification. ScienceDirect Available from: https://www.sciencedirect.com/science/article/pii/S2352431618302414

  334. De la Peña L, Cetto AM (1994) Quantum phenomena and the zero-point radiation field. Found Phys 24.6:917–48

    Google Scholar 

  335. Hasson U, Ghazanfar AA, Galantucci B, Garrod S, Keysers C (2012) Brain to brain coupling: a mechanism for creating and sharing a social world. Trends Cogn Sci 16:114–212

    Article  Google Scholar 

  336. Pizz R, Gelain F, Vescovi A (2004) Nonlocal correlations between separated neural networks. Proc SPIE Int Soc Opt Eng 5436:107–111

    Google Scholar 

  337. Radin DI (2004) Event-related electroencephalographic correlations between isolated human subjects. J Altern Complement Med 10(2):315–323

    Article  Google Scholar 

  338. Richards TL, Kozak L, Johnson LC, Standish LJ (2005) Replicable functional magnetic resonance imaging evidence of correlated brain signals between physically and sensory isolated subjects. J Altern Complement Med 11(6):955–963

    Article  Google Scholar 

  339. Standish LJ, Kozak L, Johnson LC, Richards T (2004) Electroencephalographic evidence of correlated event-related signals between the brains of spatially and sensory isolated human subjects. J Altern Complement Med 10(2):307–314

    Article  Google Scholar 

  340. Wackermann J, Seiter C, Keibel H, Walach H (2003) Correlations between brain electrical activities of two spatially separated human subjects. Neurosci Lett 336(1):60–64

    Article  Google Scholar 

  341. Hardy CH (2016) ISS theory: cosmic consciousness, self, and life beyond death in a hyperdimensional physics. J Conscious Explor Res 7(11):1012–1035

    Google Scholar 

  342. Irwin K (2014) A new approach to the hard problem of consciousness: a quasi-crystalline language of primitive units of consciousness in quantized spacetime. J Conscious Explor Res 5:483–497

    Google Scholar 

  343. Nagel T (2012) Mind and cosmos: why the materialist neo-Darwinian conception of nature is almost certainly false. Oxford New York: Oxford University Press, ISBN 9780199919758

    Google Scholar 

  344. Grandpierre A (2014) Does the universe have a physical, biological, or psychological nature? In: brain, mind, cosmos: the nature of our existence and the universe. Sages and Scientists Book

    Google Scholar 

  345. Penrose R (1989) The Emperor's New Mind: Concerning computers, minds, and the laws of physics. Oxford University Press

    Google Scholar 

  346. Seed A, Emery N, Clayton N (2009) Intelligence in corvids and apes: a case of convergent evolution? Ethology 115(5):401–420

    Article  Google Scholar 

  347. Roth G (2015) Convergent evolution of complex brains and high intelligence. Philos Trans R Soc B: Biol Sci 370:20150049. (The article itself). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650126/pdf/rstb20150049.pdf

  348. Levin M (2012) Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. BioEssays 34:205–217

    Article  Google Scholar 

  349. Samal S, Geckeler KE (2001) Unexpected solute aggregation in water on dilution. Chem Commun (Camb) 21:2224–2225

    Google Scholar 

  350. Kuhn T (1970) The structure of scientific revolutions, 2nd edn. The Univerity of Chicago Press, ISBN: 0–226-45803-2

    Google Scholar 

  351. Goodwin BC (1985) Developing organisms as self-organising fields. In: Mathematical essays on growth and the emergence of form. The university of Alberta Press, pp 185–200

    Google Scholar 

  352. Cifra M, Fields JZ, Farhadi A (2010) Electromagnetic cellular interactions. Progr Biophys Mol Biol 1–24. https://doi.org/10.1016/j.pbiomolbio.2010.07.003

  353. Jerman I, Krasovec R, Leskovar RT (2009a) Deep significance of field concept in contemporary biomedical medicine. Electromagn Biol Med 28(1):61–70. https://doi.org/10.1080/15368370802711060. https://www.researchgate.net/publication/321686137_Evidence_for_biofield

  354. Tzambazaki A (2015) The evolution of the biological field concept. https://emmind.net/openpapers_repos/Endogenous_Fields-Mind/General/EM_Various/2015_The_evolution_of_the_biological_field_concept.pdf

  355. Jerman I (2017) What nanobacteria and nanovesicles may tell us about the origin of life? Open Access Libr J 4(1):1–13

    Google Scholar 

  356. Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci 92(18):8158–8160

    Article  Google Scholar 

  357. Jerman I (2018) Emergence of organisms from ordered mesotropic states of water (liquids). Physical instead of chemical origin of life. https://www.researchgate.net/…/Manuscript_18_Jerman_Emergence

  358. von Neumann J (1966) The theory of self-reproducing automata. University of Illinois Press, Champaign

    Google Scholar 

  359. Aguilar W, Santamaría-Bonfil G, Froese T, Gershenson C (2014) The past, present, and future of artificial life. Front Robot AI 1:8

    Article  Google Scholar 

  360. Del Giudice E, Preparata G (1998) Electrodynamical like-charge attractions in metastable colloidal crystallites. Mod Phys Lett B 12:881–886

    Article  Google Scholar 

  361. Vitiello G (2020) Symmetries and metamorphoses. Symmetry 12(6):907

    Article  Google Scholar 

  362. Oparin AI, Gladilin KL (1980) Evolution of self-assembly of probionts. BioSystems 12:133–145

    Article  Google Scholar 

  363. Cairns-Smith AG (2009) An approach to a blueprint for a primitive organism. In: Waddington CH (ed) The origin of life: towards a theoretical biology, vol 1. Aldine Transaction, pp 57–66, ISBN 978-0-202-36302-8

    Google Scholar 

  364. Tranter GE (1985) Parity-violating energy differences of chiral minerals and the origin of bio molecular homochirality. Nature 318:172–173

    Article  Google Scholar 

  365. Sarfatti A (2015) Bohm Pilot wave post quantum theory. https://www.academia.edu/27132022/Bohm_Pilot_Wave_Post-Quantum_Theory

  366. Sbitnev VI (2016a) Dark matter is a manifestation of the vacuum Bose-Einstein condensate. https://arxiv.org/pdf/1601.04536.pdf

  367. Sbitnev VI (2016b) Quantum consciousness in warm, wet, and noisy brain. Modern Phys Lett B 30. https://arxiv.org/abs/1606.00258

  368. Sbitnev VI (2016c) Hydrodynamics of the physical vacuum: I. Scalar quantum sector. Found Phys 46(5):606–619. https://arxiv.org/abs/1504.07497

  369. Melkikh AV (2014) Congenital programs of the behavior and nontrivial quantum effects in the neurons work. Biosystems 119:10–19

    Article  Google Scholar 

  370. Melkikh AV, Sutormina MI (2019) Protocells and LUCA: transport of substances from first physicochemical principles. Prog Biophys Mol Biol 150:184–202

    Article  Google Scholar 

  371. Melkikh AV, Sutormina MI (2020) Intra- and intercellular transport of substances: models and mechanisms. Prog Biophys Mol Biol 150:184–202

    Article  Google Scholar 

  372. England JL, Park S, Pande VS (2008) Theory for an order-driven disruption of the liquid state in water. J Chem Phys 128:044503

    Article  Google Scholar 

  373. Tamulis A, Grigalavicius M (2011) Quantum entanglement in photoactive prebiotic systems. Orig Life Evol Biosph 41:51–71

    Google Scholar 

  374. Cronhjort MB, Blomberg C (1997) Cluster compartmentalization may provide resistance to parasites for catalytic networks. Physica D: Nonlinear Phenomena 101(3, 4):289–298

    Google Scholar 

  375. Kauffman SA (2000) Investigations. Oxford University Press

    Google Scholar 

  376. Melkikh AV (2018) The universe as a superorganism. Int J Astrobiol Aeroscape Technol. IJAAT-104. https://doi.org/10.29011/ijaat-104 100004

  377. Melkikh AV, Khrennikov A (2017b) Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution. Progr Biophys Mol Biol 130(Part A):61–79

    Google Scholar 

  378. Melkikh AV, Mahecha DS (2017) On the broader sense of life and evolution: its mechanisms, origin and probability across the universe. J Astrobiol Outreach 5(3):1–13

    Google Scholar 

  379. Jerman I (1998) Electromagnetic origin of life. Electro Magnetobiol 17(3): 401–413. https://www.researchgate.net/publication/232054835_Electromagnetic_Origin_of_Life

  380. Miller WB, Tordy JS, Baluska F (2019) Biological evolution of defense of self. Prog Biophys Mol Biol 142:54–74. https://doi.org/10.1016/j.pbiomolbio.2018.10.002, https://pubmed.ncbi.nlm.nih.gov/30336184/

  381. Melkikh AV (2014) Quantum information and the problem of mechanisms of biological evolution. BioSystems 115:33–45

    Article  Google Scholar 

  382. Melkikh AV (2015) Paradoxes of early stages of evolution of life and biological complexity. Orig Life Evolut Biosph 45(1):163–171

    Article  MathSciNet  Google Scholar 

  383. Melkikh AV (2014) The no free lunch theorem and hypothesis of instinctive animal behavior. Artif Intel Res 3(4):43–63

    Google Scholar 

  384. Melkikh AV, Khrennikov A, Yampolsky R (2019) Quantum metalanguage and the new cognitive synthesis. Neuroquantology 17(1):50–74

    Article  Google Scholar 

  385. Fedi M (2016) A superfluid theory of everything. https://hal.archives-ouvertes.fr/hal-01312579v2/document

  386. Fedi M (2016) Gravity as a fluid dynamic phenomenon in a superfluid quantum space. Fluid Quantum Gravit Relativ. https://hal.archives-ouvertes.fr/hal-01248015v4

  387. Sbitnev VI, Fedi M (2017) Superfluid quantum space and evolution of the universe. In: Souza AJCD (eds) Trends in modern cosmology, Rijeka, InTech, pp 89–112. https://www.researchgate.net/publication/317419096_Superfluid_Quantum_Space_and_Evolution_of_the_Universe

  388. Dirac PAM (1945) On the analogy between classical and quantum mechanics. Rev Mod Phys 17:195

    Article  MathSciNet  MATH  Google Scholar 

  389. Šorli AS (2019) Mass–energy equivalence extension onto a superfluid quantum vacuum. Nat Sci Rep 9:11737

    Google Scholar 

  390. Sbitnev VI (2012) chap. 15. In: Pahlavani MR (ed) Theoretical concepts of quantum mechanics. InTech, Rijeka, pp 313–334

    Google Scholar 

  391. Sbitnev VI (2012) Bohmian trajectories and the path integral paradigm—complexified lagrangian mechanics. In: Pahlavani MR (ed) Theoretical concepts of quantum mechanics. InTech, Rijeka, pp 313–334

    Google Scholar 

  392. Sbitnev VI (2013a) Generalized path integral technique: Nanoparticles incident or slit grating matter wave interference. In: Bracken P (ed) Advances in quantum mechanics. InTech, Rijeka, chap. 9, pp 183–211

    Google Scholar 

  393. Sbitnev VI (2015) Chapter 12. In: Pahlavani MR (ed) Selected topics in applications of quantum mechanics. InTech, Rijeka, pp 345–373

    Google Scholar 

  394. Sbitnev VA (2017) Hydrodynamics of superfluid quantum space: de Broglie interpretation of quantum mechanics. https://arxiv.org/abs/1707.08508

  395. Baars BJ, Franklin S, Zoege Ramsoy T (2013) Global workspace dynamics: cortical “binding and propagation” enables conscious contents. Front Psychol 4:200

    Article  Google Scholar 

  396. Cacha LA, Poznanski RR (2014) Genomic instantiation of consciousness in neurons through biophoton field theory. J Intergr Neurosci 13:253–292

    Article  Google Scholar 

  397. Beck F, Eccles JC (1992) Quantum aspects of brain activity and the role of consciousness. Proc Natl Acad Sci USA 89(23):11357–11361

    Article  Google Scholar 

  398. Goodman G, Poznanski RR, Cacha L, Bercovich D (2015) The two-brains hypothesis: towards a guide for brain-brain and brain-machine interactions. J Integr Neurosci 14:1–13

    Article  Google Scholar 

  399. Ho MW (2012) Super-conducting liquid crystalline water aligned with collagen fibres in the fascia as acupuncture meridians of traditional Chinese medicine. Forum Immunopathol Dis Ther 3:221–236

    Article  Google Scholar 

  400. Kumar S et al (2016) Possible existenc of optical communication channels in the brain. Nature Scientific Reports 6:36508

    Article  Google Scholar 

  401. Schwartz SA (2013) Crossing the threshold: non-local consciousness and the burden of proof. Explore 9:77–81

    Article  Google Scholar 

  402. Penrose R (2014) On the gravitization of quantum mechanics 1: quantum state reduction. Found Phys 44:557–575

    Article  MathSciNet  MATH  Google Scholar 

  403. Tegmark M (2000) The importance of quantum decoherence in brain processes. Phys Rev E 61:4194

    Article  Google Scholar 

  404. Hameroff S, Penrose R (2011) Consciousness in the universe: neuroscience, quantum space-time geometry and orch or theory. Cosmol Conscious Quantum Phys Neurosci Mind 14:51–102

    Google Scholar 

  405. Hameroff S, Penrose R (2014) Consciousness in the universe: a review of the ‘Orch OR’ theor. Phys Life Rev 11(1):39–78

    Article  Google Scholar 

  406. Tuszynski JA (2014) The need for a physical basis of cognitive process: comment on “Consciousness in the universe. A Review of the ‘Orch OR’ theory” by Hameroff and Penrose. Phys Life Rev 11:79

    Google Scholar 

  407. Chua LO (2011) Resistance switching memories are memristors. Appl Phys A 102:765–783

    Article  MATH  Google Scholar 

  408. Allakhverdov VM (2000) Consciousness as a paradox. Experimental psychologic. St.-Petersburg, Russia: Publ. DNK

    Google Scholar 

  409. Bell RP (1973) The proton in chemistry, 2nd edn. Springer USA, p 21

    Google Scholar 

  410. Bell RP (1959) The proton in chemistry. Cornell University Press, Ithaca

    Google Scholar 

  411. Albareti FD, Cembranos JAR, Maroto AL (2014) The large scale structure of tha vacuum. Int J Mod Phys D 23:7 (1442019)

    Google Scholar 

  412. Bohm D (1952) Wholeness and the implicate order. Routledge & Kegan Paul, London

    Google Scholar 

  413. De Broglie L (1987) Interpretation of quantum mechanics by double solution theory. Annales de la Fondation Louis de Broglie 12:1

    Google Scholar 

  414. Dudkin AO, Sbitnev VI (1998) Coupled map lattice simulation of epileptogenesis in hippocampal slices. Biol Cybern 78:479

    Article  MATH  Google Scholar 

  415. Chaplin M (2016) Water structure and science: Grotthuss mechanism. Available: http://www1.lsbu.ac.uk/water/grotthuss.html#r2116. Accessed 16 Mar 2016

  416. Messori C (2019) Deep into water: exploring the hydro-electromgnetic and quantum-electrodynamic properties of interfacial water in living systems. Open Acces Library J 6:e5435

    Google Scholar 

  417. DeCoursey TE (2003) Voltage-gated proton channels and other proton transfer pathways. Physiol Rev 83(2):475–579

    Article  Google Scholar 

  418. Hassanali A, Giberti F, Cuny J, Kühne TD, Parrinell M (2013) Proton transfer through the water gossamer. PNAS 110(34):13723–13728

    Article  Google Scholar 

  419. Brady R, Anderson R (2014) Why bouncing droplets are a pretty good model of quantum mechanics. http://arxiv.org/abs/1401.4356

  420. Wilson WD (1960) Speed of sound in sea water as a function of temperature, pressure, and salinity. J Acoust Soc Am 32(6):641

    Article  Google Scholar 

  421. Pollack GH (2013) The fourth phase of water: beyond solid, liquid, and vapor. Ebner and Sons Publ., Seattle, pp 98105

    Google Scholar 

  422. Agnom N (1995) The Grotthuss mechanism. Chem Phys Lett 244(5–6):456–462

    Google Scholar 

  423. Peng Y, Swanson JMJ, Kang SG, Zhou R, Voth GA (2015) Hydrated excess protons can create their own water wires. J Phys Chem B 119(29):9212–9218

    Article  Google Scholar 

  424. Atkins P, de Paula J, Friedman R (2009) Quanta, matter, and charge: a molecular approach to physical chemistry. W. H. Freeman, New York

    Google Scholar 

  425. Brewer ML, Schmitt UW, Voth GA (2001) The formation and dynamics of proton wires in channel environments. Biophys J 80(4):1691–1702

    Article  Google Scholar 

  426. Miller CC (1924) The Stokes-Einstein law for diffusion in solution. Proc R Soc Lond. Ser A 106(740):724–749

    Google Scholar 

  427. Nelson E (1985) Quantum fluctuations. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  428. Nelson E (1966) Derivation of the Schrodinger equation from Newtonian Mechanics. Phys Rev 150:1079–1085

    Article  Google Scholar 

  429. Penrose R, Hameroff S (2011) Consciousness in the Universe. J Cosmol 14. http://journalofcosmology.com/Consciousness160.html

  430. Tarlaci S (2013) What should a consciousness-mind-brain theory be like? Reducing the secret of the rainbow to the colours of a prism. NeuroQuantology 11(2):360–377

    Google Scholar 

  431. Lighthill MJ (1986) An informal introduction to theoretical fluid mechanic. Oxford University Press, Oxford

    MATH  Google Scholar 

  432. Benseny A, Albareda G, Sanz AS, Mompart J, Oriols X (2014) Applied Bohmian mechanics. Eur Phys J D 68:286–328

    Article  Google Scholar 

  433. Kundu P, Cohen I (2002) Fluid Mechanics. Academic Press, San Diego

    Google Scholar 

  434. Martins AA, Pinheiro MJ (2009) Fluidic electrodynamics: approach to electromagnetic propulsion. Phys Fluids 21:097103

    Article  MATH  Google Scholar 

  435. Martins AA (2012) Fluidic electrodynamics: on parallels between electromagnetic and fluidic inertia. 21 February. Available: http://arxiv.org/abs/1202.4611

  436. Derbes D (1966) Feynman’s derivation of the Schrodinger equation. Am J Phys 64(7):881–884

    Article  MathSciNet  MATH  Google Scholar 

  437. Feynman RP, Hibbs A (1965) Quantum mechanics and path integrals. McGraw Hill, New York

    Google Scholar 

  438. Hameroff S, Penrose R (2014) Reply to seven commentaries on “consciousness in the universe: review of the ‘Orch OR’ theory. Phys Life Rev 11(1):94–100

    Article  Google Scholar 

  439. Hameroff S, Penrose R (2014) Reply to criticism of the ‘Orch OR qubit’—’Orchestrated objective reduction’ is scientifically justified. Phys Life Rev 11(1):104–112

    Article  Google Scholar 

  440. Tuszynski JA et al (2019) Microtubules as sub-cellular memristors, submitted for publication

    Google Scholar 

  441. Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Ann Rev Neurosci 27:393–418

    Google Scholar 

  442. Söhl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6:191–199

    Google Scholar 

  443. Meier C, Dermietzel R (2006) Electrical synapses—gap junctions in the brain. In: Eckart D, Seidenbecher C, Schraven B, Gundelfinger (eds) Cell communication in nervous and immune system. Springer, Berlin, pp 99–128

    Google Scholar 

  444. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry, 5th edn. W. H. Freeman, New York

    Google Scholar 

  445. Zampighi G (1987) Gap junction structure. Cell-to-Cell communication. Plenum Press, New York, pp 1–28

    Google Scholar 

  446. Hameroff S (1998) Quantum computation in brain microtubules? The Penrose-Hameroff ‘Orch OR’ model of consciousness. Phil Trans R Soc Lond A 356:1896–1896

    MathSciNet  MATH  Google Scholar 

  447. Volman V, Perc M, Bazhenov M (2011) Gap junctions and epileptic seizures—two sides of the same coin? PLoS ONE 6(5):e20572

    Article  Google Scholar 

  448. Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Rev 47:191–215

    Article  Google Scholar 

  449. Maxwell RW (2009) Neurobiology of chakras and prayer. Zygon 44(4):807–824

    Article  Google Scholar 

  450. Jin M-M, Zhong C (2011) Role of gap junctions in epilepsy. Neurosci Bull 27(6):389–406

    Article  Google Scholar 

  451. Nemani VM, Binder DK (2005) Emerging role of gap junctions in epilepsy. Histol Histopathol 20:253–259

    Google Scholar 

  452. Mitterauer BJ (2014) Pathophysiology of Schizophrenia based on impaired Glial-Neuronal interactions. Open J Med Psychol 3(2):126–140

    Article  Google Scholar 

  453. Wang X-J (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90(3):1195–1268

    Article  Google Scholar 

  454. Ciufolini I, Wheeler JA (1995) Gravitation and inertia. Princeton University Press, Princeton, New Jersey

    Book  MATH  Google Scholar 

  455. Nader T (2015) Consciousness is all there is. Int J Math Conscious 1:1

    Google Scholar 

  456. Wheeler JA, Feynman RP (1945) Interaction with the absorber as a mechanism of radiation. Rev Mod Phys 17:157–181

    Article  Google Scholar 

  457. Cramer JG (1986) The transactional interpretation of quantum mechanics. Rev Mod Phys 58:647–688

    Article  MathSciNet  Google Scholar 

  458. Baconnier S, Lang SB (2004) Calcite microcrystals in the pineal gland of the human brain: second harmonic generators and possible piezoelectric transducers. IEEE Trans Dielectr Electr Insul 11(2):201–209

    Google Scholar 

  459. Golubev SN, Golubev SS (2009) Sight at the physical microcosm from the position of the biologist. (Dalnauka, Vladivostok; in Russian). http://www.chronos.msu.ru/old/RREPORTS/golubevy_mikromir.pdf

  460. Kryukov V (2008) The role of the hippocampus in long-term memory: is it memory store or comparator. J Integr Neurosci 7(1):117–84. https://doi.org/10.1142/s021963520800171x

  461. Vinogradova OS (1975) The hippocampus and memory. Nauka, Moscow

    Google Scholar 

  462. Saura CA, Parra-Damas A, Enriquez-Barreto L (2015) Gene expression parallels synaptic excitability and plasticity changes in Alzheimer’s disease. Front Cell Neurosci 25 August 2015; doi: https://doi.org/10.3389/fncel.2015.00318

  463. iNeuronLab (2017) Hippocampal circuits. CC Attribution-Share Alike 4.0 International

    Google Scholar 

  464. Lacaile J-C, Schwartzkroin PA (1988) Striatum lacunosum-molecular interneurones of hippocampal CA1 region. 2. Intrasomatic and intradendritic recordings of local circuit synaptic interactions. J Neurosci 8:1411–1424

    Google Scholar 

  465. Williams S, Samulack DD, Beaulieu C, Lacaille J-C (1994) Membrane properties and synaptic responses of interneurons located near the stratum lacunosum-moleculare/radiatum border of area CA1 in whole-cell recordings from rat hippocampal slices. J Neurophys 71:2217–2235

    Google Scholar 

  466. Manns JR, Eichenbaum H (2009) A cognitive map for object memory in the hippocampus. Learn Mem 16:616–624. https://doi.org/10.1101/lm.1484509

    Article  Google Scholar 

  467. Bandyopadhyay A (2019) Resonance chains and new models of the neuron. https://medium.com/@aramis720/resonance-chains-and-new-models-of-the-neuron-7dd82a5a7c3a

  468. Eccles J, Feindel W (1978) Wilder Graves Penfield, 26 January 1891–5 April 1976. Biogr Mem Fellows R Soc 24:472–513. https://doi.org/10.1098/rsbm.1978.0015

  469. Blom JD (2009) A dictionary of hallucinations. Springer Science & Business Media. pp 1–51. https://doi.org/10.1007/978-1-4419-1223-7

  470. Tong F (2003) Out-of-body experiences: from Penfield to present. Trend Cognit Sci 7(3):104–106. https://doi.org/10.1016/s1364-6613(03)00027-5

    Article  MathSciNet  Google Scholar 

  471. Penfield Wi (1952) Memory mechanisms. Archives of neurology and psychiatry 67(2):178–198. https://doi.org/10.1001/archneurpsyc.1952.02320140046005

    Article  MathSciNet  Google Scholar 

  472. Deli E, Tozzi A, Peters JF (2017) Relationship between short and fast brain tmescales. Cogn Neurodyn 11:539–552

    Article  Google Scholar 

  473. Craddock TJA, Tuszynski JA, Hameroff S (2012) Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Comput Biol 8:e1002421

    Article  Google Scholar 

  474. Pereira A (2007) Astrocyte-trapped calcium ions: the hypothesis of a quantum-like conscious protectorate. Quantum Biosyst 2:80–92

    Google Scholar 

  475. Pereira A (2007) Astrocyte-trapped calcium ions: the hypothesis of a quantum-like conscious protectorate. Quantum Biosystems 2:80–92

    Google Scholar 

  476. Pereira A, Furlan FA (2007) Biomolecular information, brain activity and cognitive function. ARBS Ann Rev Biomed Sci 9:12–29

    Google Scholar 

  477. Pall ML (2013) Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med 17:958–965

    Article  Google Scholar 

  478. Bull C, Freitas KC, Zou S, Poland RS, Syed WA, Urban DJ, Minter SC, Shelton KL, Hauser KF, Negus SS, Knapp PE, Bowers MS (2014) Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence. Neuropsychopharmacology 39:2835–2845 [PubMed: 24903651]

    Article  Google Scholar 

  479. Han X et al (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12(3):342–353. 7 Mar 2013, https://doi.org/10.1016/j.stem.2012.12.015, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700554/

  480. Tang A, Wang S (2009) Trasition of spiral calcium waves between multiple state patterns can be triggered by single calcium spark in the fire-diffue-fire model. CHAOS 19:037114

    Article  Google Scholar 

  481. Nunn C (2010) Landscape of mentality, consciousness and time. J Conscious Explor Res 1:516–528

    Google Scholar 

  482. Fisher MPA (2015) Quantum cognition: the possibility of processing with nuclear spin. 29 Aug 2015. arXiv:1508.05929v2 [q-bio.NC]

  483. Dehaene S, Sergent C, Changeux, JP (2003) A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci 14: 8520–8525

    Google Scholar 

  484. Tononi G (2008) Consciousness as integrated information: a provisional manifesto. Biol Bull 215:216–242

    Article  Google Scholar 

  485. Rizvi SIM (2018) Quantum mechanics of ‘conscious energy’. Int J Mind Brain Cogn 9(1, 2):132–160

    Google Scholar 

  486. Verlinde EP (2016) Emergent gravity and dark Universe. https://arxiv.org/abs/1611.02269

  487. Brandenburg JE, Hardy CH (2016) Entropic gravity in pre-spacetime & the ISS theory of a cosmic information field. Pre-spacetime J 7:828–838

    Google Scholar 

  488. Pribram KH (2014) Consciousness reassessed. Mind Matter 2:7–35. philpapers.org/rec/PRICR

    Google Scholar 

  489. Mitchell ED, Staretz R (2011) The quantum hologram and the nature of consciousness. J Cosmol 14:1–35

    Google Scholar 

  490. Irwin K (2017) Eight things as first principles theory of everything should posses. https://www.semanticscholar.org/paper/Eight-Things-a-First-Principles-Theory-of-Should-Irwin/bc0b5a9dc19466a27151399fdef24b257d8bb121

  491. Irwin K (2017) Quantum walk on a spin network and the golden ratio as the fundamental constant of nature. https://www.researchgate.net/publication/316554631_Quantum_Walk_on_a_Spin_Network_and_the_Golden_Ratio_as_the_Fundamental_Constant_of_Nature

  492. Irwin K (2020) The self-simulation hypotheis iterpretation of quantum mechanics. Entropy 22(2):247. https://doi.org/10.3390/e22020247 https://www.mdpi.com/1099-4300/22/2/247

  493. Irwin K (2019) Towards the unification of physics and number theory. Rep Adv Phys Sci 3:1950003

    Article  Google Scholar 

  494. Brueck DL, Meijer DKF (2020) A new premise for quantum physics, consciousness and the fabric of reality, submitted for publication

    Google Scholar 

  495. Loll R, Ambjorn J, Jurkiewicz J (2005) The Universe from Scratch. arXiv:hep-th/0509010

  496. Beichler JE (2012a) The evolutionary imperative of consciousness. J Biol Phys 38:113–120

    Google Scholar 

  497. Haramein N, Rauscher EA (2007) Spinors, twistors, quaternions and the spacetime torus topology. Int J Comput Anticip Syst, pp 1–18

    Google Scholar 

  498. Amoroso RL (1999) An introduction to the noetic field theory: the quantization of mind. Noetic J 2:18–37

    Google Scholar 

  499. Atasoy S, Donnelly I, Pearson J (2016) Human brain networks function in connectome-specific harmonic waves. Nat Commun 7:1–10. https://doi.org/10.1038/ncomms10340

    Article  Google Scholar 

  500. Atasoy S, Roseman L, Kaelen M, Kringelbach ML, Deco G, Carhart-Harris R (2017) Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire reorganization under LSD. BioRxiv, 1–55. http://doi.org/10.1101/163667

  501. Joye SR (2016) The Pribram-Bohm holoflux theory of consciousness: an integral interpretation of the theories of Karl Pribram, David Bohm and Pierre Teilhard de Chardin. Cosmos and History: J Nat Soc Philos 12(2):2016

    Google Scholar 

  502. Deli E (2017) Consiousness, a cosmic phenomenon—a hypothesis. God J 8:24–42

    Google Scholar 

  503. Andersen SSL, Jackson AD, Heimburg T (2009) Toards a thermodynamic theory of pulse propagation. Progr Neurol 88:104–113

    Article  Google Scholar 

  504. Kraikivsky P (2019) Systems of oscillators designed for a specific conscious percept, https://arxiv.org/abs/1903.02594

  505. Fingelkurts AA, Fingelkurts AA, Neves CFH (2010) Emergent monism, biological realism, operation and brain-mind problem. Phys Life Rev 7:264–268

    Article  Google Scholar 

  506. Fingelkurts AA, Fingelkurts A (2014) Present moment, past and future: mental kaleidoscope. Front Psychol

    Google Scholar 

  507. Kida T, Tanaka E, Kakigi R (2016) Multi-dimensional dynamics of human electromagnetic brain activity. Front Human Neurosci 9:1–20

    Google Scholar 

  508. Pereira A, Nunn C, Pregnolato M, Nixon G (2018) Consciousness and cosmos. Building an ontological framework. J Conscious Stud 25(3, 4):181–205. https://www.researchgate.net/publication/319632327_Consciousness_and_Cosmos_Building_an_Ontological_Framework

  509. Poznanski RR, Cacha LA, Latif AZ, Salleh SH, Ali J, Yupapin P, Tuszynski JA, Tengku MA (2019) Theorizing how the brain encodes consciousness based on negentropic entanglement. J Integr Neurosci 18(1):1–10

    Google Scholar 

  510. Poznanski RR, Cacha LA, Latif AZA, Salleh SH, Ali J, Yupapin P, Tuszynski JA, Tengku MA (2018) Spontaneous potentiality as formative cause of thermo-quantum consciousness. J Integr Neurosci 17:371–385

    Google Scholar 

  511. Cacha LA, Ali J, Rizvi ZH, Yupapin PP, Poznanski RR (2017) Non-synaptic plasticitymodel of long-term memory. J Integr Neurosci 16:493–509

    Article  Google Scholar 

  512. Tressoldi P, Facco E, Lucangeli D (2016) Emergence of qualia from brain activity or from an interaction of protoconsciousness with the brain: which one is the weirder? Available evidence and a research agenda https://www.scienceopen.com/document_file/582a2cc6-0249-43b1-ae9f-91dcd27ae34a/ScienceOpen/3752_XE510976944243037072.pdf

  513. Williford K, Bennequin D, Friston K Rudrauf D (2018) The projective consciousness model and phenomenal selfhood. Front Psychol 9, article 2571

    Google Scholar 

  514. Pletcher AE (2019) Quantum cosmology and the role of consciousness. NeuroQuantology 17(01):104–111. https://doi.org/10.14704/nq.2019.17.01.1934

  515. Libet B (1996) Conscious mind as a field. J Theor Biol 178:223–224

    Article  Google Scholar 

  516. Bradley RT (2018) The psychophysiology of intuition: A quantum-holographic theory of nonlocal communication. World Futur 63(2):61–97 https://philpapers.org/rec/BRATPO-2

  517. Di Biase F (2009) Quantum-Holographic informational consciousness neuroQuantology 7(4). https://doi.org/10.14704/nq.2009.7.4.259

  518. Faggin F (2014) A framework for the union of science and spirituality. http://www.fagginfoundation.org/articles-2/a-conceptual-framework-for-the-union-of-science-and-spirituality-2/

  519. Bohm D, Peat FD (2008) Science, order and creativity, 2nd edn. Routledge, London (transferred to digital printing, Routledge): ISBN 0–415-17182-2

    Google Scholar 

  520. Tozzi A, Peters JF, Jaušovec N (2017) Repetitive modular oscillation underlies human brain electric activity. http://biorxiv.org/content/biorxiv/early/2016/08/31/072538.full.pdf

  521. Greyson B (2013) Nature of mind and consciousness. Is consciousness produced by the brain? http://sfm.scienceformonks.org/SciencePrograms/MonasticGraduates/Conference/CosmologyAndConsciousnessI/Resources/Text_Is_Consciousness_Produced.pdf

  522. Carr BJ (2017) Quantum Blackholes as the link between microphysics and mactophysics. Proc Phys 208:85–94. arXiv:1703.08655 [gr-qc].

  523. Lichfiled (2015) The science of near-death experiences. Empirically investigating brushes with afterlife. https://www.theatlantic.com/magazine/archive/2015/04/the-science-of-near-death-experiences/386231/

  524. McGillchrist I (2009) The master and his emissary: the divided brain and the making of the western world. Yale University Press, New Haven. See for interview and discussion also: Divided Brain, Divided world, why the best part of us struggles to be heard. RSA Centre Brain Project

    Google Scholar 

  525. Steinhardt PJ, Turok N (2002) Cosmic evolution in a cyclic universe. Phys Rev D 65(12):126003. Bibcode:2002PhRvD.65l6003S, arXiv:hepth/0111098. https://doi.org/10.1103/physrevd.65.126003

  526. Penrose R (2010) Cycles of time: an extraordinary new view of the universe. The Bodley Head, London. ISBN 978-0-224-08036-1

    MATH  Google Scholar 

  527. Kurzweil R (2005) The singularity is near: when humans transcend biology, 1st edn., Kindle edition. Penguin Books, p 965, 22 Sept 2005

    Google Scholar 

  528. Chalmers DJ (2018) The meta-problem of consciousness. J Conscious Stud 25:6–61

    Google Scholar 

  529. Zeilinger A (2003) Quantum teleportation. Scientific Am. 8–16 Feb. Update: http://www.univie.ac.at/qfp/publications3/pdffiles/2003-24.pdf

  530. Zeilinger A (2003) Why the quantum? It from bit? A participatory universe? Three far-reaching, visionary challenges from John Archibald wheeler and how they inspired a quantum experimentalist. Harper, Templeton Foundation Press, Charles L

    Google Scholar 

  531. Tononi G, Koch C (2015) Consciousness: here, there and everywhere? Philos Trans R Soc 370

    Google Scholar 

  532. Pereira C (2015) Electromagnetic radiation, a living cell and the soul, a collated hypothesis. NeuroQuantology 13:426–438

    Article  Google Scholar 

  533. Pregnolato M, Pereira A (2016) On the possible existence of quantum consciousness after death. J Conscious Explor Res 7:969–991

    Google Scholar 

  534. Vidal C (2014) The beginning and the end: The meaning of life in a cosmological perspective. https://www.researchgate.net/publication/282286323_The_Beginning_and_the_End_The_Meaning_of_Life_in_a_Cosmological_Perspective

  535. Adey WR (1993) Biological effects of electromagnetic fields. J Cell Biochem 51: 410–416

    Google Scholar 

  536. Akhmet MA, Fen MO (2014) Generation of cyclic/toroidal chaos by Hopfield Neural Networks. Neurocomputing 145:230–239

    Google Scholar 

  537. Atwood D (1999) Graviton production by two photon and electron-photon processes in Kaluza-Klein theories with large extra dimensions. http://arxiv.org/abs/hep-ph/9909392

  538. Auletta G, Ellis GFR, Jaeger L (2008) Top-down causation by information control: from a philosophical problem to a scientific research programme. J R Soc Interface 5(27)

    Google Scholar 

  539. Aurich R, Janzer HS, Lustig S, Steiner F (2008) Do we live in a small universe? Class Quant Grav. arxiv.org/abs/0708.1420

    Google Scholar 

  540. Baez J, Vicary J (2014) Wormholes and entanglement. Class Quantum Gravity 31:11

    MATH  Google Scholar 

  541. Beck F (2008) Synaptic quantum tunnelling in brain activity. NeuroQuantology 6:140–151

    Google Scholar 

  542. Beloussov LV, Opitz JM, Gilbert SF (2004) Life of Alexander G. Gurwitsch and his relevant contribution to the theory of morphogenetic fields. Int J Dev Biol 41(6):771–777

    Google Scholar 

  543. Berkovich-Ohana A, Glicksohn J (2014) The consciousness state space (CSS)—a unifying model for consciousness and self. Front Psychol

    Google Scholar 

  544. Bérut A et al (2012) Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483:187–190

    Google Scholar 

  545. Bono I, Del Giudice E, Gamberale L, Henry M (2012) Emergence of the coherent structure of water. Water 4:510–532

    Article  Google Scholar 

  546. Burke RC, Persinger MA (2013) Convergent quantitative solutions indicating the human hippocampus as singularity and access to cosmological consciousness. Neuroquantology 11:1–7

    Article  Google Scholar 

  547. Chai S, Pollack GH (2010) Solute-free interfacial zones in polar liquids. Phys Chem B 114:5371

    Article  Google Scholar 

  548. Campbell RJ, Bickhard MH (2010) Physicalism, emergence and downward causation. http://www.lehigh.edu/~mhb0/physicalemergence.pdf

  549. Carhart-Harris RL, Friston KJ (2010) The default-mode, ego-function and free energy: a neurobiological account of Freudian ideas. Brain 133:1265–1283

    Article  Google Scholar 

  550. Cayce E. Wiki. https://en.wikipedia.org/wiki/Edgar_Cayce

  551. Chaplin MF (2000) A proposal for the structuring of water. Biophys Chem 24, 83(3):211–21

    Google Scholar 

  552. Couder Y, Fort E (2006) Single-particle diffraction and interference at a macroscopic scale. Phys Rev Lett 97:154101

    Article  Google Scholar 

  553. Craddock TJA, Friesen D, Mane J, Hameroff S, Tuszynski J (2014) The feasibility of coherent energy transfer in microtubules. J R Soc Int 11. Article ID: 2014067

    Google Scholar 

  554. Craddock TJA, Friesen D, Mane J, Hameroff S, Tuszynski J (2014) The feasibility of coherent energy transfer in microtubules. J R Soc Interf 11. Article ID: 2014067

    Google Scholar 

  555. Daywitt WC (2009) The planck vacuum. Progr Phys 1:20–26

    MathSciNet  Google Scholar 

  556. DeliE TA, Peters JF (2017) Relationship between short and fast brain tmescales. Cogn Neurodyn 11:539–552

    Article  Google Scholar 

  557. Dirac PAM (1933) The lagrangian in quantum mechanics. Physikalische Zeitschrift der Sowjetunion 3:64

    MATH  Google Scholar 

  558. Dupays A, Lamine B, Blachard A (2013) Can dark energy merge from quantum effects in a compact extra dimension? Astron Astrophys. https://arxiv.org/pdf/1301.1763.pdf

  559. Eddi A, Sultan E, Moukhtar J, Fort E, Rossi YM, Couder J (2011) From bouncing to floating: noncoalescence of drops on a fluid bath. Fluid Mech 674:433

    Google Scholar 

  560. England JL (2015) Dissipative adaptation in driven self-assembly. Nat Nanotechnol 10:919–923

    Article  Google Scholar 

  561. Ehresmann B, Burmeister S, Wimmer-Schweingruber R, Reitz G (2011) Influence of higher atmospheric pressure on the Martian radiation environment: implications for possible habitability in the Noachian epoch. J Geophys Res (Space Phys) 116(A15):10,106

    Google Scholar 

  562. Fedi M, Sbitnev VI (2017) Superfluid quantum space and evolution of the universe. Sbitnev VI, Fedi M (eds). http://dx.doi.org/10.5772/68113 https://cdn.intechopen.com/pdfs/54849.pdf

  563. Feynman RP (1948) Space-time approach to non-relativistic quantum mechanics. Rev Mod Phys 20:367

    Google Scholar 

  564. Fingelkurts A, Fingelkurts A, Neves Carlos FH (2009) Phenomenological architecture of a mind and operational architectonics of the brain: the unified metastable continuum. J New Math Nat Comput 5(1):221–244

    Article  MATH  Google Scholar 

  565. Fiscaletti D (2012) The geometrodynamic nature of the quantum potential. Ukr J Phys 57:560

    Google Scholar 

  566. Freeman WJ, Vitiello G (2006) Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Phys Life Rev 3:93–118

    Article  Google Scholar 

  567. Fremling M (2013) Coherent state wave functions on a torus with a constant magnetic field. J Phys A: Math Theor 46(27)

    Google Scholar 

  568. Frohlich F (2014) Endogenous and Exogenous electric fields as modifiers of brain activity: rational design of non-invasive brain stimulation with transcranial alternating current stimulation. Dialogues Clin Neurosci 16:93–102

    Google Scholar 

  569. Graham TM, Bernstein HJ, Wei TC, Junge M, Kwiat PG (2014) Superdense teleportation using hyperentangled photons. Nat Commun 6:7185. https://doi.org/10.1038/ncomms8185

    Article  Google Scholar 

  570. Green BR, Levin J (2007) Dark energy and stabilization of extra dimensions. arXiv:0707.1062v2 [hep-th]

  571. Gregorcic A, Jerman I (2009) On the structure of the 0retical evolutionary space in relation to biological laws. https://www.researchgate.net/publication/44658843_On_the_structure_of_theoretical_evolutionary_space_in_relation_to_biological_laws

  572. Grygiel WF (2018) On the adequacy of qualifying Penrose as a complex Pythagorean. zfn.edu.pl/index.php/zfn/article/download/439/462/

    Google Scholar 

  573. Hameroff S (2014) Consciousness, microtubules, & ‘Orch OR’: a ‘space-time odyssey’. J Conscious Stud 21:126

    Google Scholar 

  574. Hameroff S (2012) How quantum brain biology can rescue conscious free will. Front Integr Neurosci 6:1–17

    Article  Google Scholar 

  575. Haramein N, Val Baker A (2019) Resolving the vacuum catastostrophe: a generalized holographic approach. J High Energy Phys Gravitat Cosmol 5:412–425

    Article  Google Scholar 

  576. Hawking S (1988) A brief history of time. https://www.goodreads.com/book/show/3869.A_Brief_History_of_Time

  577. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (London) 117:500

    Article  Google Scholar 

  578. Heine L et al (2012) Resting state networks and consciousness. Front Psychol 3:1–12

    Article  Google Scholar 

  579. Hiller J (2019) Space, time and consciousness. https://www.nderf.org/NDERF/Articles/space_time.pdf

  580. Ho M-W (2015) Illuminating water and life: in Emilio Del Giudice Electromagn Biol Med, Early Online: 1–10 Informa Healthcare USA, Inc. https://doi.org/10.3109/15368378.2015.1036079

  581. Hu H, Wu M (2007) Spin-mediated consciousness: theory, experimental studies, further developments & related topics. arXiv.org>quant-ph. arXiv:quant-ph/0208068

  582. Huang K (2013) Dark energy and dark matter in a superfluid universe. https://arxiv.org/abs/1309.5707

  583. Jackiw RV, Nair P, Pi S-Y, Polychronakos AP (2004) Perfect fluid theory and its extensions. J Phys A 37:R327

    Article  MathSciNet  MATH  Google Scholar 

  584. Jerman I, Dovc P, Ratajc, P, Krapez V (2009b) Existence, nature and significance of biological field (the biofield). https://www.researchgate.net/project/Existence-nature-and-significance-of-biological-field-the-biofield

  585. Jishi RA (2013) Feynman diagram techniques in condensed matter physics. Cambridge University Press, Cambridge; Jung CG (2008) Synchronicity: an causal connecting principle. Routledge, East Sussex

    Google Scholar 

  586. Johnson K (2019) Cosmic water nanoclusters: a possible common origin of dark matter and dark energy. https://www.researchgate.net/publication/331903636_Cosmic_water_nanoclusters_a_possible_common_origin_of_dark_matter_and_dark_energy

  587. Jumper CC, Scholes GD (2014) Life—warm, wet and noisy? Phys Life Rev 11:85

    Article  Google Scholar 

  588. Kim D, Bowman C, Bonis-O’Donnell JTD, Matzavinos A, Stein D (2017) Giant acceleration of DNA diffusion in an array of entropic barriers. Phys Rev Lett 118:048002. Published 27 January 2017

    Google Scholar 

  589. Kira M, Hoyer W, Stroucken T, Koch S (2001) Exciton Formation in Semiconductors and the Influence of a Photonic Environment. Phys Rev Lett 87(17):176401. https://doi.org/10.1103/PhysRevLett:87.176401

    Article  Google Scholar 

  590. Kozlowska JM (2015) Consciousness and biological dark matter. https://www.researchgate.net/publication/309668098_Consciousness_and_Biological_Dark_Matter

  591. Kriegl JM, Niehaus GU (2004) Structural, dynamic, and energetic aspects of long-range electron transfer in photosynthetic reaction centers. Proc Nat Acad Sci USA 1:12312–12318

    Google Scholar 

  592. Lambert J-F (2015) Origin of life: From the mineral to the biochemical world. Web Conf 4:00012

    Article  Google Scholar 

  593. Lamoreaux GK (2007) Casimir forces: still surprising after 60 years. Physics Today, pp 40–45

    Google Scholar 

  594. Lanczos C (1970) The variational principles of mechanics. Dover Publ., Inc., New York

    Google Scholar 

  595. Landau LD, Lifshitz EM (1987) Fluid mechanics. Pergamon Press, Oxford

    Google Scholar 

  596. Lehar S (2003) Harmonic resonance theory: an alternative to the “neuron doctrine” paradigm of neurocomputation to address gestalt properties of perception. Perception. 32:423–448. http://cns-alumni.bu.edu/~slehar/webstuff/hr1/hr1.html

  597. Leroy CC, Robinson SP, Goldsmith MJ (2008) A new equation for the accurate calculation of sound speed in all oceans. J Acoust Soc Am 124(5):2774–2782

    Article  Google Scholar 

  598. Levin M (2016) Reading and writing the morphogenetic code. Foundational White Paper of the Allen Discovery Center at Tufts University

    Google Scholar 

  599. Liboff AR (1985) Geomagnetic cyclotron resonance in living cells. J Biol Phys 13

    Google Scholar 

  600. Linton O (2015) Consciousness as a meta-phenomenon. http://quantum-mind.co.uk/consciousness-as-a-meta-phenomenon/

  601. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, Sect. 16.2 electron transport and oxidative phosphorylation, , 4th edn. W. H. Freeman, New York

    Google Scholar 

  602. Lou SY et al (2013) Interactions between solitons and other non-linear Schrödinger waves. arXiv:1208.5314v2 [nlin.SI]

  603. Manousakis E (2006) Founding quantum theory on the basis of consciousness. Found Phys 36. 13 Apr 2006. arXiv:quant-ph/0604100v1

  604. Mavromatos NE, Mershin A, Nanopoulos DV (2002) QED-cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation. Int J Mod Phys B 16:3623

    Article  Google Scholar 

  605. Mc Naughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis. Neuroscience 7(8):663–678

    Google Scholar 

  606. Merker B (2007) Consiousness without a cerebral cortex: a challenge for neuroscience and medicine. Behav Brain Sci 30(1):63–81. discussion 81–134. https://www.ncbi.nlm.nih.gov/pubmed/17475053

  607. Moreva E, Brida G, Gramegna M, Giovannetti V, Maccone L, Genovese M (2013) Time from quantum entanglement: an experimental illustration

    Google Scholar 

  608. Minds NT, Cosmos (2012) Why the materialist neo-darwinian conception of nature is almost certainly false. Oxford University Press, New York

    Google Scholar 

  609. Neal L (2018) Integral relativity of awareness and energy—the continuum of consciousness, energy, mind and matter. NeuroQuantology 16:48–68

    Google Scholar 

  610. Ozil JP, Markoulaki S, Toth S, Matson S, Banrezes B, Knott JG, Schultz RM, Huneau D, Ducibella T (2005) Egg activation events are regulated by the duration of a sustained [Ca2+ ]cyt signal in the mouse. Dev Biol 282:39–54

    Article  Google Scholar 

  611. Ozols M (2007) Geometry of a Qubit. ID 20286921. http://home.lu.lv/~sd20008/papers/essays/Geometry%20[paper].pdf

  612. Pan JZ, Xi J, Eckenhoff MF (2008) Inhaled anesthetics elicit region-specific-changes in protein expression in mammalian brain. Proteomics 8(14). https://doi.org/10.1002/pmic.200800057

  613. Pekar S (1963) Research in electron theory of crystals. Tech Rep AEC-tr-5575. United States Atomic Energy Commission, Washington, DC

    Google Scholar 

  614. Pereira Jr. A, Jonathan CW, Lehmann DE, Nunn C, Trehub A, MaxVelmans, Understanding consciousness a collaborative attempt to elucidate contemporary theories. https://pdfs.semanticscholar.org/83c5/3ff7dbb3d7c668af7a30b841113b29b2ff22.pdf

  615. Perlovski L (2010) Musical emotions: functions, origins evolution. Phys Life Rev 7:2–27

    Article  Google Scholar 

  616. Persinger MA, Lavallee CF (2010) Theoretical and experimental evidence of macroscopic entanglement between human brain activity and photon emissions: implications for quantum consciousness and future applications. J Cons Explor Res 1:785–807

    Google Scholar 

  617. Persinger MA (2014) Relating casimir to magnetic energies results in spatial dimensions that define biology systems. Int Lett Chem Phys Astron 39:160–165

    Google Scholar 

  618. Pitkänen M (2017) What music could teach you about consciousness. https://pdfs.semanticscholar.org/a519/9ca490fb0244b0a0163e601710b3d135a0b7.pdf?_ga=2.56050478.424886245.1592225

  619. Pnevmatikos SN, Tsironis G (1989) Protonic conductivity: a new application of solute theory. J de Phys HAL Id: jpa-oo229440

    Google Scholar 

  620. Pockett S (2013) Field theories of consciousness. Scholarpedia 8:4951

    Article  Google Scholar 

  621. Pollack GH (2001) Cells, gels and the engines of life. Ebner and Sons Publ., Seattle

    Google Scholar 

  622. Rajna G (2018) The magnetic field of the electric current and the magnetic induction. http://academia.edu/3833335/The_Magnetic_field_of_the_Electric_current

  623. Reddy JSK, Pereira C (2016) On science & the perception of reality. J Conscious Explor Res 7:333–336

    Google Scholar 

  624. Reimers JR, McKemmish LK, McKenzie RH, Mark AE, Hush NS (2014) Phys Life Rev 11:101

    Google Scholar 

  625. Roy A (2005) Discovery of parity violation. Resonance 10(12):164–175. https://doi.org/10.1007/bf02835140

    Article  Google Scholar 

  626. Rovelli C, Smolin L (1990) Loop space representation of quantum general relativity. Nucl Phys B 331:80–152

    Article  MathSciNet  Google Scholar 

  627. Savelyev I, Myakishev-Rempel M (2005) Evidence for DNA resonance signaling via longitudinal hydrogen bonds. https://vixra.org/pdf/2005.0157v1.pdf

  628. Sbitnev VI (2009) Bohmian trajectories and the path integral paradigm: complexified lagrangian mechanics. Int J Bifurcation Chaos 19:2335. https://doi.org/10.1142/S0218127409024104

    Article  MathSciNet  MATH  Google Scholar 

  629. Sbitnev VI (1996) Matter waves in the Talbot-Lau interferometry (2010). http://arxiv.org/abs/1005.0890

  630. Sciré A (2020) A mesoscopic model for the collective dynamics of water coherence domains. arXiv:2004.07545

  631. Sengupta B, Laughlin SB, Niven JE (2013) Balanced excitatory and inhibitory synaptic currents promote efficient coding and metabolic efficiency. PLoS Comput Biol. [PMC free article] [PubMed]

    Google Scholar 

  632. Sheehan D (2011) Frontiers of time: quantum retro-causation, theory and experiments. AIP Conf Proc 1408:255–278. https://www.amazon.com/Frontiers-Time-Retrocausation-Experiment

  633. Shea N, Boldt A, Bang D, Yeung N, Heyes C, Frith CD (2014) Supra-personal cognitive control and metacognition. Trend Cognit Sci 18(4):186–193. https://doi.org/10.1016/j.tics.2014.01.006

    Article  Google Scholar 

  634. Shoup R (2011). Understanding retrocausality. Can a message be send to the past?; https://www.researchgate.net/publication/234885500_Understanding_Retrocausality-Can_a_Message_Be_Sent_to_the_Past

  635. Sporns J (2013) Network attributes to segregation and integration in the human brain. Curr Opin Neurobiol 23:162–171

    Google Scholar 

  636. Stretsov A, Singh U, Dhar HS, Bura MN, Adesso G (2015) Measuring quantum coherence with entanglement

    Google Scholar 

  637. Sunhammer J, Sulyok G, Bernroider G (2018) Quantum dynamics and non-local effects behind ion transition states during permeation in membrane channel proteins. Entropy 20:558

    Article  Google Scholar 

  638. Tang M et al (2015) Teraherz spectroscopy of oligonucleotides in aqueous solution. J Biomed Opt 20:0950091–0950095

    Article  Google Scholar 

  639. Tenen S (2002) The shape of information. Noetic J 3:173–182. http://www.meru.org/Noetic/ShapeofInfoA3HiTOC.pdf

  640. Tielrooy KJ (2010) Molecular motions of water: th effect of charged and hydrophobic solutes. Chapter 7: Structure and dynamics of the hydrated proton. pp 87–96

    Google Scholar 

  641. Tiller WA (1999) Towards a predictive model of subtle domain connections in the physical domain of reality. J Sci Explor 13:41–67

    Google Scholar 

  642. Torday S, Miller WB (2017) A systems approach to physiologic evolution: from micelles to consciousness: systems evolutionary physiology. https://www.researchgate.net/publication/312644789_A_Systems_Approach_to_Physiologic_Evolution_From_Micelles_to_Consciousness_Systems_Evolutionary_Physiology, https://arxiv.org/ftp/arxiv/papers/1401/1401.6052.pdf

  643. Toyabe S (2015) Supplementary information for information heat engine: converting information to energy by feedback control. arXiv:1009.5287v2 [cond-mat.stat-mech]

  644. Van De Bogart WG (2017) Consciousness and electronic music applied to xenolinguistics. Available from. https://www.researchgate.net/publication/317328554_Consciousness_and_Electronic_music_applied_to_xenolinguistics_New_alternatives_in_extraterrestrial_communication_by_orchestrating_the_harmonic_building_blocks_of_the_universe_to_create_space_music

  645. Van De Bogart WG (2017) Creating Sonic Topologies using Electronic Music to develop a new. Cosmol Model Conscious. https://www.researchgate.net/publication/336243136

  646. Vanga, wiki. https://en.wikipedia.org/wiki/Baba_Vanga

  647. Van Horik JO, Clayton NS, Emery NJ (2012) Convergent evolution of cognition in corvids, apes and other animals. In: The Oxford handbook of comparative evolutionary psychology, pp 80–101

    Google Scholar 

  648. Van Raamsdonk (2010) Building up spacetime with quantum entanglement. Gen Relativ Gravit 42:2323. https://arxiv.org/pdf/1005.3035.pdf

  649. Vasiliev BV (2013) Superconductivity and superfluidity. http://arxiv.org/abs/1008.2691

  650. Vasiliev BV (2015) Superconductivity and superfluidity. Science Publ. Group, New York

    Google Scholar 

  651. Vitiello G (2015) The aesthetic experience as a characteristic feature of brain dynamics. Aisthesis. Pratiche, linguaggi e saperi dell’estetico [S.l.] 8(1):71–89. ISSN 2035-8466

    Google Scholar 

  652. Wang Z, Wang N, Li Z, Xiao F, Dal J (2016) Human intelligence is involved in spectral redshift of biophotonic activities in the brain. PNAS 113:8753–8758

    Article  Google Scholar 

  653. Webber (2018) Surfism. The fluid foundation of consciousness. www.danwebberblog.wordpress.com

  654. Weingarten CP, Doraiswami PM, Fisher MPA (2016) A new spin on neural processing: quantum cognition. Front Hum Neurosci 10. art.541

    Google Scholar 

  655. Williamson JG, van der Mark MB (1997) Is the electron a photon with toroidal topology? Annales de la Fondation Louis de Broglie 22(2):133

    Google Scholar 

  656. Witten E (2003) Perturbative gauge theory as a string theory in Twistor space. Commun Math Phys 252:189–258. arXiv:hepth/0312171, Bibcode:2004CMaPh.252..189 W, https://doi.org/10.1007/s00220-004-1187-3

  657. Wolf FA (2006) Why nerve cells work faster than the theories allows. https://www.mpg.de/535717/pressRelease20060418

  658. Wongjun (2013) Casimir dark energy, stabilization of extra dimensions and Gass-Bonet term

    Google Scholar 

  659. Wyatt RE (2005) Quantum dynamics with trajectories: introduction to quantum hydrodynamics. Springer, Berlin

    Google Scholar 

  660. Yang Y, Qin Y, Ding Q, Bakhtina M, Wang L, Tsai MD, Zhong D (2014) Ultrafast water dynamics at the interface of the polymerase—DNA binding complex. Biochemistry 53:5405–5416

    Article  Google Scholar 

  661. Yepez O (2004) Matter and light in flatland, general physics, (physics.gen-ph). http://arxiv.org/pdf/physics/0401153.pdf

  662. Yoo H, Paranji R, Pollack GH (2011) Impact of hydrophilic surfaces on interfacial water dynamics probed with NMR spectroscopy. J Phys Chem Lett 2:532

    Article  Google Scholar 

  663. Yu CH, Qin Z, Martin-Martinez FJ, Buehler MJ (2019) A self-consistent sonification method to translate amino acid sequences into musical compositions and application in protein design using artificial intelligence. ACS Nano 13(7):7471–7482. 2019 Jul 23, https://doi.org/10.1021/acsnano.9b02180. Epub Jun 26

  664. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell. 132(4):645–60. https://doi.org/10.1016/j.cell.2008.01.033

  665. Zhang L, Yang Y, Kao YT, Wang L, Zhong D (2009) Protein hydration dynamics and molecular mechanism of coupled water—protein fluctuations. J Am Chem Soc 131:10677–10691

    Article  Google Scholar 

Download references

Acknowledgements

We are largely indebted to Ir. Hans Geesink, who through his consistent meta-analysis of the literature from a spectrum of disciplines in the past 5 years, provided the very basis for revealing the generalized musical (GM)-EMF-frequency scale as treated in the present chapter.

We are gratefull for all the work of Dr. Trudi Sonderkamp as to detailed text control and professional suggestions for improvement of the manuscript.

We thank Marshall Lefferts for elegantly placing our concepts in a cosmometric context in his book on Cosmometry, A Unified Model of Cosmic Geometry, Physics, Music, and Consciousness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk K. F. Meijer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meijer, D.K.F., Jerman, I., Melkikh, A.V., Sbitnev, V.I. (2021). Biophysics of Consciousness: A Scale-Invariant Acoustic Information Code of a Superfluid Quantum Space Guides the Mental Attribute of the Universe. In: Bandyopadhyay, A., Ray, K. (eds) Rhythmic Oscillations in Proteins to Human Cognition. Studies in Rhythm Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-7253-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7253-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7252-4

  • Online ISBN: 978-981-15-7253-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics