Advertisement

Method for the Recovery of Images in Databases of Skin Cancer

Conference paper
  • 239 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1245)

Abstract

Deep learning is widely used for the classification of images since the ImageNet competition in 2012 (Zaharia et al. in Common ACM 59(11):56–65, 2016, [1]; Tajbakhsh et al. in IEEE Trans Med Imaging 35(5):1299–1312, 2016, [2]). This image classification is very useful in the field of medicine, in which there is a growing interest in the use of data mining techniques in recent years. In this paper, a deep learning network was selected and trained for the analysis of a set of skin cancer data, obtaining very satisfactory results, as the model surpassed the classification results of trained dermatologists using a dermatoscope, other automatic learning techniques, and other deep learning techniques.

Keywords

Deep learning Medical images Clinical data analysis 

References

  1. 1.
    Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I (2016) Apache spark: a unified engine for big data processing. Common ACM 59(11):56–65Google Scholar
  2. 2.
    Tajbakhsh N, Shin JY, Gurudu SR, Todd Hurst R, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312Google Scholar
  3. 3.
    Manning CD, Surdeanu M, Bauer J, Finkel J, Bethard SJ, McClosky D (2014) The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd annual meeting of the association for computational linguistics: system demonstrations, pp 55–60Google Scholar
  4. 4.
    Hahsler M, Karpienko R (2017) Visualizing association rules in hierarchical groups. J Bus Econ 87:317–335Google Scholar
  5. 5.
    Alves LGA, Ribeiro HV, Rodrigues FA (2018) Crime prediction through urban metrics and statistical learning. Phys A Stat Mech Appl 505:435–443Google Scholar
  6. 6.
    Silverstein C, Brin S, Motwani R, Ullman J (2000) Scalable techniques for mining causal structures. Data Min Knowl Disc 4(2–3):163–192Google Scholar
  7. 7.
    Amelec V, Carmen V (2015) Relationship between variables of performance social and financial of microfinance institutions. Adv Sci Lett 21(6):1931–1934CrossRefGoogle Scholar
  8. 8.
    Amelec V, Lezama OBP (2019) Improvements for determining the number of clusters in k-Means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206Google Scholar
  9. 9.
    Kamatkar SJ, Kamble A, Viloria A, Hernández-Fernandez L, Cali EG (2018) Database performance tuning and query optimization. In: International conference on data mining and big data, Springer, Cham, pp 3–11Google Scholar
  10. 10.
    Erlandsson F, Brodka P, Borg A, Johnson H (2016) Finding influential users in social media using association rule learning. Entropy 18:164CrossRefGoogle Scholar
  11. 11.
    Baculo MJC, Marzan CS (2017) Remedios de Dios Bulos, and Conrado Ruiz. Geospatial-temporal analysis and classification of criminal data in manila. In: Proceedings of 2nd IEEE international conference on computational intelligence and applications, IEEE, pp 6–11Google Scholar
  12. 12.
    Amelec V et al (2019) Integration of data mining techniques to PostgreSQL database manager system. Procedia Comput Sci 155:575–580Google Scholar
  13. 13.
    Clougherty E, Clougherty J, Liu X, Brown D (2015) Spatial and temporal analysis of sex crimes in Charlottesville, Virginia. In: Proceedings of IEEE systems and information engineering design symposium, IEEE, pp 69–74Google Scholar
  14. 14.
    Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine learning. OSDI 16:265–283Google Scholar
  15. 15.
    Codella NCF, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H et al (2017) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th International symposium on biomedical imaging (ISBI 2018), IEEE, pp 168–172Google Scholar
  16. 16.
    Iavindrasana J, Cohen G, Depeursinge A, Müller H, Meyer R, Geissbuhler A (2009) Clinical data mining: a review. Yearb Med Informatics 18(01):121–133Google Scholar
  17. 17.
    Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J (2008) LIBLINEAR: a library for large linear classification. J Mach Learn Res 9:1871–1874zbMATHGoogle Scholar
  18. 18.
    Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explorations 11(1):10–18CrossRefGoogle Scholar
  19. 19.
    Kang H-W, Kang H-B (2017) Prediction of crime occurrence from multimodal data using deep learning. PLoS ONE 12(4):e0176244CrossRefGoogle Scholar
  20. 20.
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436CrossRefGoogle Scholar
  21. 21.
    Leitão JC, Miotto JM, Gerlach M, Altmann EG (2016) Is this scaling nonlinear? Roy Soc Open Sci 3(7):25–36Google Scholar
  22. 22.
    Gutman D, Codella NCF, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). Preprint http://arXiv.org/1605.01397

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Universidad de La CostaBarranquillaColombia
  2. 2.Universidad Simón BolívarBarranquillaColombia
  3. 3.Universidad LibreSan Pedro SulaHonduras

Personalised recommendations