Design of a Network with Sensor-Cloud Technology Applied to Traffic Accident Prevention

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1245)


The main goal of this research is to facilitate the connection of sensors, people and objects to build a centralized community with parameter measurement applications, where people can share and analyze sensor data in real-time. For example, public institutions that plan, regulate and control land transport, traffic and road safety, and that aim to increase the level of road safety, would be able to prevent traffic accidents by monitoring public transport vehicles in real-time. To obtain real-time data, transport units would be installed with biosensors and a video camera, which would send a series of data automatically for storage and processing in the sensor cloud. The data will allow the recognition of facial expressions and the analysis of physiological variables to determine the driver’s mood, according to which immediate actions will be taken to control this variable; and through an audible alarm or a led screen, the actions to be taken by the driver or the passenger would be explained, and even an automatic setting of the interior of the vehicle can be carried out and the emergency units informed according to the case.


WSN Cloud computing 6LowPAN Sensor cloud 


  1. 1.
    Ye Q, Zhuang W (2017) Distributed and adaptive medium access control for Internet-of-Things-enabled mobile networks. IEEE Internet Things J 4(2):446–460CrossRefGoogle Scholar
  2. 2.
    Agencia Nacional de Regulación y Control del Transporte Terrestre (2015) Proyecto Seguridad Integral para el Transporte Público y Comercial. EcuadorGoogle Scholar
  3. 3.
    Delgado C et al (2018) Joint application admission control and network slicing in virtual sensor networks. IEEE Internet Things J 5(1):28–43CrossRefGoogle Scholar
  4. 4.
    Alamri A, Shadab Ansari W, Mehedi Hassan M, Shamim Hossain M, Alelaiwi A, Anwar Hossain M (2013) A survey on sensor-cloud: architecture, applications, and approaches. Int J Distrib Sens Netw 9(2). Recuperado de
  5. 5.
    Giraldo MA(Mayo de 2013) Estudio y Simulación de Redes Ad-Hoc Vehiculares VANETS. Universidad Católica de Pereira Ingeniería de Sistemas y TelecomunicacionesGoogle Scholar
  6. 6.
    Hernandez J (2014) AutoEmotive, bringing empathy to the driving experience to manage stress. MIT Media Lab, CambridgeGoogle Scholar
  7. 7.
    Hernández JV (2010) Redes inalámbricas de sensores: una nueva arquitectura eficiente y robusta basada en jerarquía dinámica de grupos. Editorial Universitat Politècnica de València, ValenciaGoogle Scholar
  8. 8.
    Beng LH (2009) Sensor cloud: towards sensor-enabled cloud services. Intelligent Systems Center Nanyang Technological UniversityGoogle Scholar
  9. 9.
    Consuegra MC (2014) Conectando los vehículos a Internet en el sistema de transporte inteligente estandarizado por el ETSI. Departamento de Ingeniería Telemática, LeganésGoogle Scholar
  10. 10.
    ESEC (2014) Introducción a las Redes de Sensores Inalámbricas. Plataforma Tecnológica Española, EspañaGoogle Scholar
  11. 11.
    Misra S, Chatterjee S, Obaidat MS (2017) On theoretical modeling of sensor cloud: a paradigm shift from wireless sensor network. IEEE Syst J 11(2):1084–1093CrossRefGoogle Scholar
  12. 12.
    Fundación Comisariado Europeo del Automóvil (2015) Informe sobre la influencia de la fatiga y el sueño en la conducción. Fundación CEA. Recuperado de
  13. 13.
    Ibañez P (2011) Sistemas de detección en los coches para evitar accidentes. Xataka. Recuperado de
  14. 14.
    Joyanes L (2012) Computación en la nube. Estrategias de Cloud Computing en las empresas. AlfaomegaGoogle Scholar
  15. 15.
    Bharat KS, Priyanka AN (2014) Sensor information management using cloud computing. Int J Comput Appl 103(14)Google Scholar
  16. 16.
    Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M (2014) Internet of things for smart cities. IEEE Internet Things J. 1(1):22–32CrossRefGoogle Scholar
  17. 17.
    Roberto Fernández Martínez JO (2009) Redes inalámbricas de Sensores: Teoría y Aplicación Práctica. España: Grupo de Investigación EDMANS-Universidad de la RiojaGoogle Scholar
  18. 18.
    Scanaill MJ (2013) Sensor technologies, healthcare, wellness and environmental applications. Apress open. Int J Comput Appl 14(103):14–22Google Scholar
  19. 19.
    Kelion L (2014) Crean dispositivo que detecta las emociones humanas a partir de la piel. BBC News. Recuperado de 1–20.
  20. 20.
    Mell P, Grance T (2011) The NIST definition of cloud computing. Recommendations of the National Institute of Standards and Technology. National Institute of Standards and Technology, 800–845. Recuperado de
  21. 21.
    Mohapatra S (2014) The scalable architecture for future generation computing. Department of Computer Science and Engineering. National Institute of Technology, Springer, India, pp 963–974Google Scholar
  22. 22.
    Dinh T, Kim Y (2017) An efficient sensor-cloud interactive model for on-demand latency requirement guarantee. In: 2017 IEEE International Conference on Communications (ICC). pp 1–6Google Scholar
  23. 23.
    Peñaherrera AF (2009) Pago electrónico a través de teléfonos móviles. ESPOL, Guayaquil, pp 85–96Google Scholar
  24. 24.
    Amelec V (2015) Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv Sci Lett 21(5):1406–1408CrossRefGoogle Scholar
  25. 25.
    Viloria A, Robayo PV (2016) Inventory reduction in the supply chain of finished products for multinational companies. Indian J Sci Technol 8(1):47–55Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Universidad de la CostaBarranquillaColombia
  2. 2.Universidad Simona BolívarBarranquillaColombia
  3. 3.Universidad LibreSan Pedro SulaHonduras

Personalised recommendations