RETRACTED CHAPTER: Geosimulation as a Tool for the Prevention of Traffic Accidents

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1245)


Traffic accidents represent a never-ending tragedy, and according to the World Health Organization (2018), 1.33 million people die in the world every year [1]. Most efforts in modeling phenomena of a dynamic nature have focused on working with static snapshots that reduce the natural depth of the world’s dynamics to simplify it, abstracting perspectives that are fixed or static in some way. In the case of traffic accidents, most models used are those based on the principle of cause and effect, where the appearance of one or several variables gives rise to the event, like a domino effect. In this research, the problem of traffic accident avoidance was addressed through the use of a dynamic type model, based on the technique called geosimulation, where all the elements involved are interrelated.


Traffic accidents Geosimulation Agent-based modeling Geographic information systems Dynamic models Traffix 


  1. 1.
    Marston S, Li Z, Bandyopadhyay S, Zhang J, Ghalsas A (2011) Cloud computing—the business perspective. Dec Supp Syst 51(1):176–189Google Scholar
  2. 2.
    Bifet A, De Francisci Morales G (2014) Big data stream learning with Samoa. Recuperado de
  3. 3.
    Lomax T, Schrank D, Turner S, Margiotta R (2003) Report for selecting travel reliability measures. Federal Highway Administration, Washington, DCGoogle Scholar
  4. 4.
    Anderson JA (2007) In: S.A. de C.V. (ed) Redes neuronales, 1a ed. Alfa Omega Gru-po Editor, México, pp 120–125. ISBN 9789701512654Google Scholar
  5. 5.
    Pardillo J, Sánchez V (2015) Apuntes de Ingeniería de Tránsito. ETS Ingenieros de Caminos, Canales y Puertos, Madrid, EspañaGoogle Scholar
  6. 6.
    Skabardonis A, Varaiya P, Petty K (2003) Measuring recurrent and non-recurrent traffic congestion. Transp Res Rec J Transp Res Board 1856:60–68CrossRefGoogle Scholar
  7. 7.
    U.S. Department of Transportation (2004) Archived data management systems—a cross-cutting study. Publication FHWA-JPO-05–044. FHWA, U.S. Department of TransportationGoogle Scholar
  8. 8.
    Yong-chuan Z, Xiao-qing Z, li-ting Z, Zhen-ting C (2011) Traffic congestion detection based on GPS floating-car data. Proc Eng 15:5541–5546Google Scholar
  9. 9.
    Thames L, Schaefer D (2016) Software defined cloud manufacturing for industry 4.0. Procedía CIRP 52:12–17Google Scholar
  10. 10.
    Viloria A, Neira-Rodado D, Lezama OBP (2019) Recovery of scientific data using intelligent distributed data warehouse. In: ANT/EDI40 2019, pp 1249–1254Google Scholar
  11. 11.
    Viloria A, Lezama OBP (2019) Improvements for determining the number of clusters in k-Means for innovation databases in SMEs. In: ANT/EDI40 2019, pp 1201–1206Google Scholar
  12. 12.
    Alcalá R, Alcalá-Fdez J, Herrera F (2007) A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans Fuzzy Syst 15(4):616–635CrossRefGoogle Scholar
  13. 13.
    Alpaydin E (2004) Introduction to machine learning. The MIT Press, MassachusettszbMATHGoogle Scholar
  14. 14.
    Álvarez P, Hadi M, Zhan C (2010) Using Intelligent transportation systems data archives for traffic simulation applications. Transp Res Rec J Transp Res Board 2161:29–39CrossRefGoogle Scholar
  15. 15.
    Bizama J (2012) Modelación y simulación mediante un microsimulador de la zona de influencia del Puente Llacolén. Memoria de Título, Universidad del Bio BioGoogle Scholar
  16. 16.
    Levinson H, Rakha H (2010) Analytical procedures for determining the impacts of reliability mitigation strategies. Cambridge Systematics, Texas A&M University, Dowling Associates, Street SmartsGoogle Scholar
  17. 17.
    Cortés CE, Gibson J, Gschwender A, Munizaga M, Zúñiga M (2011) Commercial bus speed diagnosis based on GPS-monitored data. Transp Res Part C 19(4):695–707CrossRefGoogle Scholar
  18. 18.
    Diker AC (2012) Estimation of traffic congestion level via FN-DBSCAN algorithm by using GPA data. In: 2012 IV international conference problems of cybernetics and informatics (PCI), Baku, AzerbaijanGoogle Scholar
  19. 19.
    Amelec V (2015) Increased efficiency in a company of development of technological solutions in the areas commercial and of consultancy. Adv Sci Lett 21(5):1406–1408CrossRefGoogle Scholar
  20. 20.
    Viloria A, Robayo PV (2016) Inventory reduction in the supply chain of finished products for multinational companies. Indian J Sci Technol 8(1)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Universidad de La CostaBarranquillaColombia
  2. 2.Universidad Simón BolívarBarranquillaColombia
  3. 3.Universidad LibreSan Pedro SulaHonduras

Personalised recommendations