Skip to main content

Cultivation of Microalgae: Effects of Nutrient Focus on Biofuels

  • Chapter
  • First Online:
Microbial Strategies for Techno-economic Biofuel Production

Abstract

Several microalgae have potential to produce biofuels, carotenoids, polyunsaturated fatty acids, peptides, and phytosterols. Microalgae are capable of producing biofuels competently as another potential alternate as feedstock and may help to generate extra revenue, when its cultivation is handled scientifically at large-scale. The growth medium components, which is a major part of their cultivation, play a key role to improve its cellular components and mass accumulation. The medium components are varied according to the nature of microalgae, i.e., heterotrophic, autotrophic, and their nature of availability. In this chapter, nutritional factors, suitable compositions of media used for various microalgae cultivation, photosynthesis process, micronutrients requirements, and bioreactors for microalgae are discussed. For enhanced production of biofuels and bioactive compounds, optimized environmental conditions and nutritional factors for effective cultivation of microalgae have been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

BBM:

Bold basal medium

BG 11:

Blue-green medium

E:

Energy

EDTA:

Ethylenediamine tetraacetic acid

ESM:

Enriched sea water medium

h:

Plank’s constant

K medium:

Keller medium

kLa:

Mass transfer coefficient

MBM:

Modified Bristol Medium

MDM:

Modified Detmer’s Medium

NADPH2:

Nicotinamide adenine dinucleotide

PBR:

Photobioreactor

PU:

Poly unsaturated fatty acids

TAP:

Tris–acetate–phosphate medium

TG-FA:

Triglyceride fatty acids

ν:

Frequency

References

  • Abu-Rezq TS, Al-Musallam L, Al-Shimmari J, Dias P (1999) Optimum production conditions for different high-quality marine algae. Hydrobiologia 403:97–107

    Google Scholar 

  • Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol 32:270–277

    CAS  PubMed  Google Scholar 

  • Amro AA, Steinbüchel A (2013) New medium for pharmaceutical grade Arthrospira. Int J Bacteriol 2013:203432. https://doi.org/10.1155/2013/203432

    Article  CAS  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Eco Eng 28(1):64–70

    Google Scholar 

  • ASTM (2012) Standard guide for conducting static toxicity tests with microalgae. E1218-04. In: Annual book of ASTM Standards, vol 11.06, West Conshohocken, PA, USA

    Google Scholar 

  • Atlas RM, Parks LC (1997) Handbook of microbiological media, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Barsanti L, Gualtieri P (2006) Algae—anatomy, biochemistry, and biotechnology. CRC Press, Taylor and Francis Group, Boca Raton, pp 215–235

    Google Scholar 

  • Bautista-Chamizo E, Borrero-Santiago AR, De Orte MR, DelValls Á, Riba I (2018) Effects of CO2 enrichment on two microalgae species: a toxicity approach using consecutive generations. Chemosphere 213:84–91

    CAS  PubMed  Google Scholar 

  • Becker EW (2007) Microalgae as a source of protein. Biotechnol Adv 25:207–210

    CAS  PubMed  Google Scholar 

  • Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6:34

    Google Scholar 

  • Bold HC (1942) Cultivation of algae. Bot Rev 8:69–138

    Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2013) Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresour Technol 143:1–9

    CAS  PubMed  Google Scholar 

  • Brown MR (1991) The amino-acid and sugar composition of 16 species of microalgae used in mariculture. J Exp Mar Biol Ecol 145:79–99

    CAS  Google Scholar 

  • Carefoot JR (1968) Culture and heterotrophy of the freshwater dinoflagellate, Peridinium cinctum fa. ovoplanum Lindeman. J Phycol 4:129–131

    CAS  PubMed  Google Scholar 

  • Carvalho AP, Malcata FX (2001) Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules. Biotechnol Prog 17:265–272

    CAS  PubMed  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    CAS  PubMed  Google Scholar 

  • Castenholz RW (1969) Thermophilic bluegreen algae and the thermal environment. Bacteriol Rev 33:476–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chae SR et al (2006) Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photobioreactor. Bioresour Technol 97:322–329

    CAS  PubMed  Google Scholar 

  • Chen B, Wan C, Mehmood MA, Chang J-S, Bai F, Zhao X (2017) Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products—a review (Part 2). Bioresour Technol 244:1198–1206

    CAS  PubMed  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    CAS  PubMed  Google Scholar 

  • Christaki E, Florou-Paneri P, Bonos E (2011) Microalgae: a novel ingredient in nutrition. Int J Food Sci Nutr 62:794–799

    CAS  PubMed  Google Scholar 

  • Chu SP (1942) The influence of the mineral composition of the medium on the growth of planktonic algae. J Ecol 30:284–325

    CAS  Google Scholar 

  • Chu F-F, Chu P-N, Cai P-J, Li W-W, Lam PKS, Zeng RJ (2013) Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol 134:341–346

    CAS  PubMed  Google Scholar 

  • Cuellar García DJ, Rangel-Basto YA, Barajas-Solano AF, Muñoz-Peñalosa YA, Urbina-Suarez NA (2019) Towards the production of microalgae biofuels: the effect of the culture medium on lipid deposition. J Biotechnol Comput Biol Bionanotechnol Biotechnol 100(3):273–278

    Google Scholar 

  • da Silva Gorgônio CM, Aranda DAG, Couri S (2013) Morphological and chemical aspects of Chlorella pyrenoidosa, Dunaliella tertiolecta, Isochrysis galbana and Tetraselmis gracilis microalgae. Nat Sci 5:783

    Google Scholar 

  • Debjani M, van Leeuwen J, Buddhi L (2012) Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res 1:40–48

    Google Scholar 

  • Delrue F, Setier PA, Sahut C, Cournac L, Roubaud A, Peltier G, Froment AK (2012) An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol 111:191–200

    CAS  PubMed  Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412

    Google Scholar 

  • Eriksen NT, Poulsen BR, Iversen JJL (1998) Dual sparging laboratory-scale photobioreactor for continuous production of microalgae. J Appl Phycol 10(4):377–382

    Google Scholar 

  • Esakkimuthu S, Krishnamurthy V, Govindarajan R, Swaminathan K (2016) Augmentation and starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus. Biomass Bioenergy 88:126–134

    CAS  Google Scholar 

  • Fan L et al (2007) Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane photobioreactor. Chem Eng Technol 30:1094–1099

    CAS  Google Scholar 

  • Fan L et al (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Memb Sci 325:336–345

    CAS  Google Scholar 

  • FAO (2018) News article: world’s future multiple food security “in jeopardy” due to challenges, report warns item/471169/icode/. http://www.fao.org/news/story/en/

  • Ferreira BS et al (1998) Microporous hollow fibres for carbon dioxide absorption: mass transfer model fitting and the supplying of carbon dioxide to microalgal cultures. Chem Technol Biotechnol 71:61–70

    CAS  Google Scholar 

  • Frac M, Jezierska TS, Jerzy T (2010) Microalgae for biofuels production and environmental applications: a review. Afr J Biotechnol 9(54):9227–9236

    Google Scholar 

  • Goldman JC, Carpenter EJ (1974) A kinetic approach to the effect of temperature on algal growth. Limnol Oceanogr 5:756–766

    Google Scholar 

  • González López CV, García MDCC, Fernández FGA, Bustos CS, Chisti Y, Sevilla JMF (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591

    Google Scholar 

  • Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6:331–335

    Google Scholar 

  • Grobbelaar JU (2004) Algal nutrition: mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, pp 97–115

    Google Scholar 

  • Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with Chlorophyllide C. J Phycol 8:10–14

    CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    CAS  PubMed  Google Scholar 

  • Guzzon A et al (2008) Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res 42:4357–4367

    CAS  PubMed  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook. Academic Press Inc., San Diego

    Google Scholar 

  • Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169

    CAS  Google Scholar 

  • Hossain N, Mahlia TMI, Saidur R (2019) Latest development in microalgae-biofuel production with nano-additives. Biotechnol Biofuels 12:125–141

    PubMed  PubMed Central  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    CAS  Google Scholar 

  • Hutner SH, Zahalsky AC, Aaronson S, Baker H, Frank O (1966) Culture media for Euglena gracilis. In: Prescott DM (ed) Methods in cell physiology, vol 2. Academic Press, New York, pp 217–228

    Google Scholar 

  • Ichimura T (1979) 2. Isolation and culture methods of algae. 2.5.B. Freshwater algae. In: Nishizawa K, Chihara M (eds) Methods in phycological studies. Kyoritsu Shuppan, Tokyo, p 294305

    Google Scholar 

  • Ichimura T, Watanabe M (1974) The Closterium calosporum complex from the Ryukyu Islands—variation and taxonomical problems. Mem Natn Sci Mus Tokyo 7(89102):13–14

    Google Scholar 

  • Janssen M, Slenders P, Tramper J, Mur LR, Wijffels RH (2001) Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microbial Technol 29:298–305

    CAS  Google Scholar 

  • Kamalanathan M, Gleadow R, Beardall J (2015) Impacts of phosphorus availability on lipid production by Chlamydomonas reinhardtii. Algal Res 12:191–196

    Google Scholar 

  • Kato S (1982) Laboratory culture and morphology of Colacium vesiculosum Ehrb. (Euglenophyceae). Jpn J Phycol 30:63–67

    Google Scholar 

  • Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23:633–638

    Google Scholar 

  • Kent M, Welladsen HM, Mangott A, Li Y (2015) Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One 10:0118985

    Google Scholar 

  • Kessler E, Czygan FC (1970) Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. Arch Mikrobiol 70:211–216

    CAS  PubMed  Google Scholar 

  • Kimura B, Ishida Y (1985) Photophagotrophy in Uroglena americana, Chrysophyceae. Jpn J Limnol 46:315–318

    Google Scholar 

  • Kodama M et al (1993) A new species of highly CO2-tolerant fast growing marine microalga suitable for high-density culture. J Marine Biotechnol 1:21–25

    Google Scholar 

  • Kumar A et al (2009) Hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. J Chem Technol Biotechnol 85:387–394

    Google Scholar 

  • Kurpan NDP, Silva AF, Araújo OQF, Chaloub RM (2015) Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae. Biomass Bioenergy 72:280–287

    Google Scholar 

  • Laura B, Paolo G (2014) Alga: anatomy, biochemistry and biotechnology, 2nd edn. CRC Press, Boca Raton, pp 246–250

    Google Scholar 

  • Lee YK, Tay HS (1991) High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture. J Appl Phycol 3:95–101

    Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. App Microbiol Biotechnol 80:749–756

    CAS  Google Scholar 

  • Liao Q, Chang H-X, Fu Q, Huang Y, Xia A, Zhu X et al (2018) Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light, carbon and nutrients. Bioresour Technol 250:583–590

    CAS  PubMed  Google Scholar 

  • Matsumoto H et al (1995) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 51(52):681–692

    Google Scholar 

  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sust Energ Rev 58:180–197

    Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10(1):31–41. https://doi.org/10.1007/s11157-010-9214-7

    Article  Google Scholar 

  • Molina E, Fernandez J, Acien FG, Chisti Y (2011) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131

    Google Scholar 

  • Nakamura T (2004) Local and chemical distribution of phlorotannins in brown algae. J Appl Phycol 16:291–296

    Google Scholar 

  • Niccolai A, Chini ZG, Rodolfi L, Biondi N, Tredici MR (2019) Microalgae of interest as food source: biochemical composition and digestibility. Algal Res 42:101617

    Google Scholar 

  • Noël MH, Kawachi M, Inouye I (2004) Induced dimorphic life cycle of a coccolithophorid, Calyptrosphaera sphaeroidea (Prymnesiophyceae, Haptophyta). J Phycol 40:112–129

    Google Scholar 

  • Ogawa T, Terui G (1970) Studies on the growth of Spirulina platensis. (I) On the pure culture of Spirulina platensis. J Ferment Technol 48:361–367

    Google Scholar 

  • Pai PR, Manasa A, Kalaivani T, Ajeesh CPM, Rajasekaran C, Prasad BN (2008) Simplified cost effective media variants for the rapid culture of Spirulina platensis. In: Prasad BN, Mathew L (eds) Recent advances in biotechnology. Excel India Publishers, New Delhi, pp 1–129

    Google Scholar 

  • Paul JH, Rosemary EW, Taylor FJR (1980) A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. J Phycol 16:28–35

    Google Scholar 

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—a process view. J Biotechnol 142:64–69

    CAS  PubMed  Google Scholar 

  • Provasoli L, McLaughlin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Mikrobiol 25:392–428

    CAS  PubMed  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    CAS  PubMed  Google Scholar 

  • Qiu R, Gao S, Lopez PA, Ogden KL (2017) Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res 28:192–199

    Google Scholar 

  • Ramanna L, Rawat I, Bux F (2017) Light enhancement strategies improve microalgal biomass productivity. Renew Sust Energ Rev 80:765–773

    Google Scholar 

  • Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98(3):560–564

    CAS  PubMed  Google Scholar 

  • Richmond A (1999) Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 353–386

    Google Scholar 

  • Richmond A, Becker EW (1986) Technological aspects of mass cultivation—a general outline. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 245–263

    Google Scholar 

  • Ricketts TR (1966) On the chemical composition of some unicellular algae. Phytochemistry 5:67

    CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Genl Microbiol 111:1–61

    Google Scholar 

  • Robertson BR, Tezuka N, Watanabe MM (2001) Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51:861–871

    CAS  PubMed  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    CAS  PubMed  Google Scholar 

  • Sajjadi B, Chen W-Y, Raman AAA, Ibrahim S (2018) Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew Sust Energ Rev 97:200–232

    CAS  Google Scholar 

  • Sako Y, Ishida Y, Kadota H, Hata Y (1984) Sexual reproduction and cyst formation in the freshwater dinoflagellate Peridinium cunningtonii. Bull Jpn Soc Sci Fish 50:743–750

    Google Scholar 

  • Samel A, Ziegenfuss M, Goulden CE, Banks S, Baer KN (1999) Culturing and bioassay testing of Daphnia magna using Elendt M4, Elendt M7 and Combo media. Ecotoxicol Environ Saf 43:103–110

    CAS  PubMed  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Google Scholar 

  • Schwenzfeier A, Wierenga PA, Gruppen H (2011) Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour Technol 102:9121–9127

    CAS  PubMed  Google Scholar 

  • Seambiotic (2009). http://www.seambiotic.com. Accessed 6 Jul 2009

  • Seyed HN, Shang H, Scott JA (2018) Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems. Renew Sust Energ Rev 92:458–469

    Google Scholar 

  • Sharma J, Kumar SS, Bishnoi NR, Pugazhendhi A (2018) Enhancement of lipid production from algal biomass through various growth parameters. J Mol Liq 269:712–720

    CAS  Google Scholar 

  • Shin YS, Choi HI, Choi JW, Lee JS, Sung YJ, Sim SJ (2018) Multilateral approach on enhancing economic viability of lipid production from microalgae: a review. Bioresour Technol 258:335–344

    CAS  PubMed  Google Scholar 

  • Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sust Energ Rev 50:431–444

    CAS  Google Scholar 

  • Suh IS, Lee CG (2003) Photobioreactor engineering: design and performance. Biotechnol Bioprocess Eng 8(6):313–321

    CAS  Google Scholar 

  • Tibbetts SM, Milley JE, Lall SP (2015) Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 27:1109–1119

    CAS  Google Scholar 

  • Torzillo G, Sacchi A, Materassi R, Richmond A (1991a) Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J Appl Phycol 3:103–109

    Google Scholar 

  • Torzillo G, Sacchi A, Materassi R (1991b) Temperature as an important factor affecting productivity and night biomas loss in Spirulina platensis grown outdoors in tubular photobioreactors. Bioresour Technol 38:95–100

    Google Scholar 

  • Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J Appl Phycol 4:221–231

    Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028

    CAS  PubMed  Google Scholar 

  • van Krimpen MM, Bikker P, Van der Meer IM, van der Peet-Schwering CMC, Vereijken JM (2013) Cultivation, processing and nutritional aspects for pigs and poultry of European protein sources as alternatives for imported soybean products, Wageningen. http://www.livestockresearch.wur.nl. Accessed 26 Nov 2018

  • Velasco LA, Carrera S, Barros J (2016) Isolation, culture and evaluation of Chaetoceros muelleri from the Caribbean as food for the native scallops, Argopecten nucleus and Nodipecten nodosus. Lat Am J Aquat Res 44:557–568

    Google Scholar 

  • Venkata Subhash G, Rohit MV, Devi MP, Swamy YV, Venkata MS (2014) Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater. Bioresour Technol 169:789–793

    CAS  PubMed  Google Scholar 

  • Vivi E, Sarjito, Johannes H, Budi P (2012) Effect of using Guillard and Walne technical culture media on growth and fatty acid profiles of microalgae Skeletonema sp. in mass culture. J Coast Dev 16:50–56

    Google Scholar 

  • Vonshak A (1986) Laboratory techniques for the cultivation of microalgae. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 117–145

    Google Scholar 

  • Watanabe S (1981) Observations on Urnella terrestris Playfair (Chlorophyceae, Chlorococcales) in culture. Phycologia 20:12–15

    Google Scholar 

  • Watanabe MM (1983) Growth characteristics of freshwater red tide alga, Peridinium based on axenic culture. Establishment of synthetic culture medium. Res Data Natl Inst Environ Stud No 24:111–121

    Google Scholar 

  • Watanabe MM, Kawachi M, Hiroki M, Kasai F (2000) NIES collection list of strains. In: Microalgae and protozoa. Microbial culture collections, 6th edn. National Institute for Environmental Studies, Tsukuba, p 159

    Google Scholar 

  • Wogan DM, Silva AKD, Webber ME, Stautberg E (2008) Algae: pond powered biofuels; ATI clean energy incubator. The University of Texas at Austin, Austin, pp 1–23

    Google Scholar 

  • Wolkers H, Barbosa M, Kleinegris D, Bosma R, Wijffels RH (2011) Microalgae: the green gold of the future?, Wageningen. www.groenegrondstoffen.nl

  • Wondraczek L, Batentschuk M, Markus AS, Borchardt R, Scheiner S, Seemann B, Schweizer P, Christoph JB (2013) Solar spectral conversion for improving the photosynthetic activity in algae reactors. Nat Commun 4:2047

    PubMed  Google Scholar 

  • Xinxin W, Hilde KF, Keshuai L, Matilde SC, Olav V, Kjell IR (2019) Influence of nitrogen limitation on lipid accumulation and EPA and DHA content in four marine microalgae for possible use in aquafeed. Front Mar Sci 6:1–10

    Google Scholar 

  • Xiong W, Li XF, Xiang JY, Wu QY (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36

    CAS  PubMed  Google Scholar 

  • Yagi O, Okada M, Sudo R (1979) Cultivation of Microcystis and red-tide organisms. Res Rep Natl Inst Environ Stud 6:223–229

    Google Scholar 

  • Yamaguchi K, Nakano H, Murakami M, Konosu S, Nakayama O, Kanda M, Nakamura A, Iwamoto H (1987) Lipid composition of a green alga, Botryococcus braunii. Agric Biol Chem 51(2):493–498

    CAS  Google Scholar 

  • Yang AD (2011) Modeling and evaluation of CO2 supply and utilization in algal ponds. Ind Eng Chem Res 50:11181–11192

    CAS  Google Scholar 

  • Yang Y, Gao K (2003) Effects of CO2 concentrations on the freshwater microalgae Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15:379–389

    CAS  Google Scholar 

  • Zhu J, Rong J, Zong B (2013) Factors in mass cultivation of microalgae for biodiesel. Chin J Catal 34:80–100

    CAS  Google Scholar 

  • Zu N, Richmond A (2000) Light-path length and population density in photoacclimation of Nannochloropsis sp. (Eustigmatophyceae). J Appl Phycol 12:349–354

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kadimpati, K.K., Sanneboina, S., Golla, N., Kumpati, R., Skarka, W. (2020). Cultivation of Microalgae: Effects of Nutrient Focus on Biofuels. In: Srivastava, N., Srivastava, M., Mishra, P.K., Gupta, V.K. (eds) Microbial Strategies for Techno-economic Biofuel Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-7190-9_4

Download citation

Publish with us

Policies and ethics