Skip to main content

Natural Antimicrobial Materials

  • Chapter
  • First Online:
Advanced Antimicrobial Materials and Applications

Abstract

Microorganisms correspond to a wide variety of viruses, bacteria, among others, that can produce positive or negative effects on the environment. The accumulation of these microorganisms on surfaces is usually very associated with diseases. The Environmental Protection Agency (EPA) is an organization that controls possible risks to human health and the environment, in which it also participates in the study of some microorganisms. The research of this organization focuses on ecological processes associated with how to reduce or eliminate the negative consequences produced by a microbe. Therefore, the importance of following green synthesis and the use of renewable natural materials that show beneficial properties and improve global sustainability arises. Furthermore, antimicrobial agents emerge as a possible alternative to eliminate or reduce possible microorganisms. Materials like polymers, organic acids, peptides, polysaccharides are some examples of these bioactive compounds. Each of these materials has a specific mode of action (still unknown in some cases) and properties that have been demonstrated in different strains of bacteria. This chapter details the natural antimicrobial materials commonly used today and how they act on microbiological strains, with powerful biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya V, Prabha CR, Narayanamurthy C (2004) Synthesis of metal incorporated low molecular weight polyurethanes from novel aromatic diols, their characterization and bactericidal properties. Biomaterials 25(19):4555–4562

    Article  CAS  Google Scholar 

  • Agency USEP (n.d.) Basics of green chemistry

    Google Scholar 

  • Aguilera-Aguirre S, Meza-Espinoza L, Hernández-Mendoza A, Vallejo-Córdoba B, González-Córdova AM-GE (2018) Evaluation of oxidative hemolytic inhibition capacity and antimicrobial activity of peptide fractions from egg, milk and soy protein hydrolysis using Bromelia pinguin and Bromelia karatas derived proteases. Rev Espec Cienc Quím Biol 21(S1):13–21

    Google Scholar 

  • Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT- Food Sci Technol 43(6):837–842

    Article  CAS  Google Scholar 

  • Al-Muaikel NS, Al-Diab SS, Al-Salamah AA, Zaid AM (2000) Synthesis and characterization of novel organotin monomers and copolymers and their antibacterial activity. J Appl Polym Sci 77:740–745

    Article  CAS  Google Scholar 

  • Altman H, Steinberg D, Porat Y, Mor A, Fridman D, Friedman M, Bachrach G (2006) In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. Antimicrob Chemoth 58(1):198–201

    Article  CAS  Google Scholar 

  • Alves D, Pereira MO (2014) Mini-review: antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces. Biofouling 30(4):483–499

    Article  CAS  Google Scholar 

  • Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Pept Sci 47(6):415–433

    Article  CAS  Google Scholar 

  • Annuk H, Shchepetova J, Kullisaar T, Songisepp E, Zilmer M, Mikelsaar M (2003) Characterization of intestinal lactobacilli as putative probiotic candidates. J Appl Microbiol 94(3):403–412

    Article  CAS  Google Scholar 

  • Antimicrobial (2020) Merriam-Webster online dictionary. Accessed May 15, 2020

    Google Scholar 

  • Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2):203–230

    CAS  Google Scholar 

  • Arora D, Sharma N, Sharma V, Abrol V, Shankar R, Jaglan S (2016) An update on polysaccharide-based nanomaterials for antimicrobial applications. Appl Microbiol Biotechnol 100:2603–2615

    Article  CAS  Google Scholar 

  • Arshad MS, Batool SA (2017) Natural antimicrobials, their sources and food safety. Food Addit 2017:88–89

    Google Scholar 

  • Aruguete D, Kim B, Hochella MF, Ma Y (2013) Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci 15(1):93–102

    CAS  Google Scholar 

  • Arvanitoyannis IS, Nakayama A, Aiba S (1998) Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydr Polym 37:12

    Article  Google Scholar 

  • Ayala G (2015) Efecto antimicrobiano del quitosano: una revisión de la literatura. Sci Agroaliment 2:32–38

    Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils - a review. Food Chem Toxicol 46(2):446–475

    Article  CAS  Google Scholar 

  • Batt CA (2016) Microorganisms. Elsevier, London, pp 8–9

    Google Scholar 

  • Bhatia S, Bharti A (2015) Evaluating the antimicrobial activity of nisin, lysozyme and ethylenediaminetetraacetate incorporated in starch based active food packaging film. J Food Sci Technol 52(6):3504–3512

    CAS  Google Scholar 

  • Bingöl EB, Bostan K (2007) Effect of sodium lactate on the microbiological quality and shelf life of sausages. Turk J Vet Anim Sci 31:33–39

    Google Scholar 

  • Brochu S, Prud'homme RE, Barakat I, Jérome R (1995) Stereocomplexation and morphology of polylactides. Macromolecules 28:5230–5239

    Article  CAS  Google Scholar 

  • Brudzinski L, Harrison MA (1998) Influence of incubation conditions on survival and acid tolerance response of Escherichia coli O157:H7 and non-O157:H7 isolates exposed to acetic acid. J Food Prot 61(5):542–546

    Article  CAS  Google Scholar 

  • Buchanan R, Edelson S (1999) pH-dependent stationary-phase acid resistance response of enterohemorrhagic Escherichia coli in the presence of various acidulants. J Food Prot 62(3):211–218

    Article  CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  Google Scholar 

  • Campos M, Lião L, Alves E, Migliolo L, Dias S, Franco O (2018) A structural perspective of plant antimicrobial peptides. Biochem J 475(21):3349–3375

    Article  Google Scholar 

  • Can Başer KH, Buchbauer G (2015) Handbook of essential oils: science, technology, and applications, 2nd edn. Taylor & Francis, Milton Park

    Book  Google Scholar 

  • Castelletto V, Kaura A, HamleY I, Barnesa RH, Karatzasa K, Hermida-Merinob D, Swiokloc S, Connonc C, Stasiakd J, Rezae M, Ruokolainen J (2017) Hybrid membrane biomaterials from self-assembly in polysaccharide and peptide amphiphile mixtures: controllable structural and mechanical properties and antimicrobial activity. R Soci Chem 7:8366–8375

    CAS  Google Scholar 

  • Chen YL, Chou CC (2005) Factors affecting the susceptibility of Staphylococcus Aureus CCRC 12657 to water soluble lactose chitosan derivative. Food Microbiol 22(1):29–35

    Article  CAS  Google Scholar 

  • Chen CS, Liau WY, Tsai GJ (1998) Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation. J Food Prot 61(9):1124–1128

    Article  CAS  Google Scholar 

  • Cheng H, Yu R, Chou C (2003) Increased acid tolerance of Escherichia coli O157:H7 as affected by acid adaptation time and conditions of acid challenge. Food Res Int 36(1):49–56

    Article  CAS  Google Scholar 

  • Cherringtona CA, Hintona M, Meada GC, Choprab I (1991) Organic acids: chemistry, antibacterial activity and practical applications. Adv Microb Physiol 32:87–108

    Article  Google Scholar 

  • Chung YC, Kuo CL, Chen CC (2005) Preparation and important functional properties of water-soluble chitosan produced through maillard reaction. Bioresour Technol 96(13):1473–1482

    Article  CAS  Google Scholar 

  • Clairenstein G (2020) Differences between natural & man-made materials. Accessed May 14, 2020

    Google Scholar 

  • Coma V (2013) Polysaccharide-based biomaterials with antimicrobial and antioxidant properties. Polimeros 23(3):287–297

    CAS  Google Scholar 

  • Costa F, Carvalho I, Montelaro R, Gomes P, Martins M (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440

    Article  CAS  Google Scholar 

  • Dananjaya SHS, Godahewa GI, Jayasooriya RGPT, Chulhong O, Jehee L, Mahanama DZ (2014) Chitosan silver nano composites (CAgNCs) as potential antibacterial agent to control Vibrio tapetis. J Vet Sci Technol 5(5):2–7

    Google Scholar 

  • Daoud WA, Tung W (2011) Self-cleaning fibers via nanotechnology - a virtual reality. J Mater Chem 21:7858–7869

    Article  CAS  Google Scholar 

  • Davidson PM, Taylor TM (2007) Chemical preservatives and natural antimicrobial compounds. In: Food microbiology: fundamentals and frontiers, 3rd edn. ASM Press, Washington, pp 713–745

    Google Scholar 

  • Demain AL (1992) Microbial secondary metabolism: a new theoretical frontier for academia, a new opportunity for industry. Second Metab Funct Evol 3:21–23

    Google Scholar 

  • Dibner JJ, Buttin P (2002) Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J Appl Poult Res 11(4):453–463

    Article  CAS  Google Scholar 

  • Du J, Hsieh Y (2007) PEGylation of chitosan for improved solubility and fiber formation via electrospinning. Cellulose 14:543–552

    Article  CAS  Google Scholar 

  • Du J, Hsieh Y (2009) Cellulose/chitosan hybrid nanofibers from electrospinning. Cellulose 16:247–260

    Article  CAS  Google Scholar 

  • Duarte E (2009) Studies of chromium removal from tannery wastewaters by quitosan biosorbents obtained shrimp. Sci Technol 2(42):290–295

    Google Scholar 

  • Duri S, Harkins AL, Frazier AJ, Tran CD (2017) Composites containing fullerenes and polysaccharides: green and facile synthesis, biocompatibility, and antimicrobial activity. ACS Sustain Chem Eng 5(6):5408–5417

    Article  CAS  Google Scholar 

  • Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114(4):1173–1182

    Article  CAS  Google Scholar 

  • El Ghaouth A, Arul J, Ponnampalam R, Boulet M (1991) Chitosan coating effect on storability and quality of fresh strawberries. J Food Sci 56(6):1618–1620

    Article  Google Scholar 

  • Erdem B, Kariptas E, Kaya T, Tulumoglu S, Görgülü Ö (2016) Factors influencing antibacterial activity of chitosan against Aeromonas hydrophila and Staphylococcus aureus. Int Curr Pharm J 5(5):45–48

    Article  CAS  Google Scholar 

  • Giuliani A, Pirri G, Bozzi A, Di Giulio A, Aschi M, Rinaldi A (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65(16):2450–2460

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, López de Lacey A, Gómez-Guillén MC, López-Caballero ME, Montero P (2009) Antimicrobial activity of composite edible films based on fish gelatin and chitosan incorporated with clove essential oil. J Aquat Food Prod Technol 18(1-2):46–52

    Article  CAS  Google Scholar 

  • Gómez-García M, Sol C, de Nova P, Puyalto M, Mesas L, Puente H, Mencía-Ares Ó, Miranda R, Argüello H, Rubio P, Carvajal A (2019) Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porcine Health Manage 5:32

    Article  Google Scholar 

  • Greenway DL, Dyke KG (1979) Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. J Gen Microbiol 115(1):233–245

    Article  CAS  Google Scholar 

  • Hancock R, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16(2):82–88

    Article  CAS  Google Scholar 

  • Hancock RE, Sahl H (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557

    Article  CAS  Google Scholar 

  • Haque T, Chen H, Ouyang W, Martoni C, Lawuyi B, Urbanska AM, Prakash S (2005) Superior cell delivery features of poly(ethylene glycol) incorporated alginate, chitosan, and poly-l-lysine microcapsules. Mol Pharm 2(1):29–36

    Article  CAS  Google Scholar 

  • Heunis T, Bshena O, Klumperman B, Dicks L (2011) Release of bacteriocins from nanofibers prepared with combinations of poly(D,L-Lactide) (PDLLA) and poly(ethylene Oxide) (PEO). Int J Mol Sci 12(4):2158–2173

    Article  CAS  Google Scholar 

  • Heydarian M, Jooyandeh H, Nasehi B, Noshad M (2017) Characterization of Hypericum perforatum polysaccharides with antioxidant and antimicrobial activities: Optimization based statistical modeling. Int J Biol Macromol 104(Pt A):287–293

    Article  CAS  Google Scholar 

  • Huh AJ, Kwon YJ (2011) Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145

    Article  CAS  Google Scholar 

  • Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:1–24

    Article  Google Scholar 

  • Kalagatura NK, Gurunathan S, Kamasani JR, Gunti L, Kadirvelu K, Mohan CD, Rangappa S, Prasad R, Almeida F, Mudilii V, Siddaiah C (2020) Inhibitory effect of C. zeylanicum, C. longa, O. basilicum, Z. officinale, and C. martini essential oils on growth and ochratoxin A content of A. ochraceous and P. verrucosum in maize grains. Biotechnol Rep 27:e00490. https://doi.org/10.1016/j.btre.2020.e00490

    Article  Google Scholar 

  • Kenawy E, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8(5):1359–1384

    Article  CAS  Google Scholar 

  • Kenton W (n.d.) Environmental Protection Agency – EPA

    Google Scholar 

  • Kong M, Chen XG, Xing K, Park H (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Article  CAS  Google Scholar 

  • Krichen F, Karoud W, Sila A, Abdelmalek B, Ghorbel R, Ellouz-Chaabouni S, Bougatef A (2015) Extraction, characterization and antimicrobial activity of sulfated polysaccharides from fish skins. Int J Biol Macromol 75:283–289

    Article  CAS  Google Scholar 

  • Kumar MN, Muzzarelli C, Sashiwa H, Domb A (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104(12):6017–6084

    Article  Google Scholar 

  • Kungel P, Correa VG, Correa R, Peralta R, Soković M, Calhelha R, Bracht A, Ferreira I, Peralta R (2018a) Antioxidant and antimicrobial activities of a purified polysaccharide from yerba mate (Ilex paraguariensis). Int J Biol Macromol 114:1161–1167

    Article  CAS  Google Scholar 

  • Kungel PT, Correa V, Corrêa R, Peralta R, Soković M, Calhelha R, Bracht A, Ferreira I, Peralta R (2018b) Antioxidant and antimicrobial activities of a purified polysaccharide from yerba mate (Ilex paraguariensis). Biol Micromol 114:1161–1167

    Article  CAS  Google Scholar 

  • Kuorwel M, Kuorwel K (2011) Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents. J Food Sci 76(3):90–102

    Article  CAS  Google Scholar 

  • Lawyer C, Pai S, Watabe M, Borgia P, Mashimo T, Eagleton L, Watabe K (1996) Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived. FEBS Lett 390:95–98

    Article  CAS  Google Scholar 

  • Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H et al (2013) Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13(12):1057–1098

    Article  Google Scholar 

  • Lemire J, Harrison J, Turner R (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384

    Article  CAS  Google Scholar 

  • Lin J, Lee IS, Frey J, Slonczewski J, Foster J (1995) Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177(14):4097–4104

    Article  CAS  Google Scholar 

  • Lizardi-Mendoza J, Argüelles Monal WM, Goycoolea Valencia FM (2016) Chemical characteristics and functional properties of chitosan. Elsevier, London

    Book  Google Scholar 

  • Llobet E, Toma JM, Bengoechea JA (2008) Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 154:3877–3886

    Article  CAS  Google Scholar 

  • Malagurski I, Levic S, Mitric M, Pavlovic V, Dimitrijevic-Brankovic S (2018) Bimetallic alginate nanocomposites: new antimicrobial biomaterials for biomedical application. Mater Lett 212:32–36

    Article  CAS  Google Scholar 

  • Mazareia F, Jooyandehb H, Noshadc M, Hojjatib M (2017) Polysaccharide of caper (Capparis spinosa L.) leaf: extraction optimization, antioxidant potential and antimicrobial activity. Int J Biol Macromol 95:224–231

    Article  CAS  Google Scholar 

  • McCarthy RR, Ullah MW, Pei E, Yang G (2019) Antimicrobial inks: the anti-infective applications of bioprinted bacterial polysaccharides. Trends Biotechnol 37(11):1155–1159

    Article  CAS  Google Scholar 

  • Melo M, Ferre R, Miguel CMA (2009) Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 7(3):245–250

    Article  CAS  Google Scholar 

  • Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270(1):1–11

    Article  CAS  Google Scholar 

  • Munoz-Bonilla A, Fernández-García M (2011) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339

    Article  CAS  Google Scholar 

  • Muñoz-Bonilla A, Cerrada M, Fernández-García M (2014) Polymeric materials with antimicrobial activity from synthesis to application. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • No HK, Young Park N, Ho Lee S, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74(1–2):65–72

    Article  CAS  Google Scholar 

  • Omardien S, Brul S, Sebastian A, Zaat J (2016) Antimicrobial activity of cationic antimicrobial peptides against gram-positives: current progress made in understanding the mode of action and the response of bacteria. Front Cell Dev Biol 4:111

    Article  Google Scholar 

  • Our Mission and What We Do. 2017

    Google Scholar 

  • Palem RR, Saha N, Shimoga GD, Kronekova Z, Sláviková M, Saha P (2017) Chitosan-silver nanocomposites: new functional biomaterial for healthcare application. Int J Polym Mater Polym Biomater 66:1–10

    CAS  Google Scholar 

  • Paul B, Hirshfield I (2003) The effect of acid treatment. Res Microbiol 154(2):115–121

    Article  CAS  Google Scholar 

  • Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature Singapore Pte Ltd., Singapore. ISBN 978-3-319-68423-9

    Book  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017a) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, Wallingford, pp 53–70

    Chapter  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017b) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  Google Scholar 

  • Prasad R, Kumar M, Kumar V (2017c) Nanotechnology: an agriculture paradigm. Springer Nature Singapore Pte Ltd., Singapore. ISBN: 978-981-10-4573-8

    Book  Google Scholar 

  • Prasad R, Kumar V, Kumar M (2017d) Nanotechnology: food and environmental paradigm. Springer Nature Singapore Pte Ltd., Singapore. ISBN 978-981-10-4678-0

    Book  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing, Cham. ISBN 978-3-319-99570-0. https://www.springer.com/978-3-319-99570-0

    Book  Google Scholar 

  • Prasad R, Siddhardha B, Dyavaiah M (2020) Nanostructures for antimicrobial and antibiofilm applications. Springer International Publishing, Cham. ISBN 978-3-030-40336-2. https://www.springer.com/gp/book/9783030403362

    Book  Google Scholar 

  • Qin Y, Xiong L, Li M, Liu J, Wu H, Qiu H, Mu H, Xu X, Sun Q (2018) Preparation of bioactive polysaccharide nanoparticles with. J Agric Food Chem 66(17):4373–4343

    Article  CAS  Google Scholar 

  • Ricke S (2003) Perspectives on the use of organic acids and short chain fatty acids antimicrobials. Poult Sci 82:632–639

    Article  CAS  Google Scholar 

  • Rodríguez-Hernández J (2017) Polymers against microorganisms on the race to efficient antimicrobial materials. Springer, Madrid

    Book  Google Scholar 

  • Røssland EAGI, Langsrud T, Sørhaug T (2003) Inhibition of Bacillus cereus by strains of Lactobacillus and Lactococcus in milk. Int J Food Microbiol 89(2-3):205–212

    Article  Google Scholar 

  • Sadanand V, Rajini N, Satyanarayana B, Rajulu AV (2016) Preparation and properties of cellulose/silver nanoparticle composites with in situ-generated silver nanoparticles using Ocimum sanctum leaf extract. Int J Polym Anal Charact 21(5):408–416

    Article  CAS  Google Scholar 

  • Saini S, Sillard C, Naceur Belgacem M, Bras J (2016) Nisin anchored cellulose nanofibers for long term antimicrobial active food packaging. RSC Adv 6(15):12422–12430

    Article  CAS  Google Scholar 

  • Sandhiya S, Dkhar SA, Surendiran A (2009) Emerging trends of nanomedicine-an overview. Fundam Clin Pharmacol 23(3):263–269

    Article  CAS  Google Scholar 

  • Seil J, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 12(7):2767–2781

    Google Scholar 

  • Shai Y (1995) Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci 20(11):460–464

    Article  CAS  Google Scholar 

  • Shao L, Xu J, Shi M, Wang X, Li Y, Kong L, Hider RC, Zhou T (2017) Preparation, antioxidant and antimicrobial evaluation of hydroxamated degraded polysaccharides from Enteromorpha prolifera. Food Chem 237:481–487

    Article  CAS  Google Scholar 

  • Sharifi M, Ebrahimi D, Hibbert D, Hook J, Hazell S (2012) Bio-activity of natural polymers from the genus Pistacia: a validated model for their antimicrobial action. Global J Health Sci 4(1):149–161

    Google Scholar 

  • Simoncic B, Tomsic B (2010) Structures of novel antimicrobial agents for textiles - a review. Text Res J 80:1721–1737

    Article  CAS  Google Scholar 

  • Skřivanová E, Marounek M (2007) Influence of pH on antimicrobial activity of organic acids against rabbit enteropathogenic strain of Escherichia coli. Folia Microbiol 52:70–72

    Article  Google Scholar 

  • Sun H, Lu X, Gao P (2011) The exploration of the antibacterial mechanism of Fe3+ against bacteria. Braz J Microbiol 42:410–414

    Article  CAS  Google Scholar 

  • Sun D, Shahzad MB, Li M, Wang G, Xu D (2014) Antimicrobial materials with medical applications. Mater Technol Adv Performed Mater 1:1–7

    Google Scholar 

  • Tahmouzi S (2014) Optimization of polysaccharides from Zagros oak leaf using RSM: antioxidant and antimicrobial activities. Carbohydr Polym 107:238–246

    Article  CAS  Google Scholar 

  • Tajkarimi M, Ibrahim S, Cliver D (2010) Antimicrobial herb and spice compounds in food. Food Control 21:1199

    Article  CAS  Google Scholar 

  • Tan H, Ma R, Lin C, Liu Z, Tang T (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14(1):1854–1869

    Article  CAS  Google Scholar 

  • Tejero-Sariñena S, Barlow J, Costabile A, Gibson GR, Rowland I (2012) In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids. Anaerobe 8(5):530–538

    Article  CAS  Google Scholar 

  • Theron M, Lues R (2011) Organic acids and food preservation. Taylor & Francis, Boca Raton

    Google Scholar 

  • Tokura S, Ueno K, Miyazaki S, Nishi N (1997) Molecular weight dependent antimicrobial activity by chitosan. Macromol Symp 120:1–9

    Article  CAS  Google Scholar 

  • Tongnuanchan P, Benjakul S (2014) Essential oils: extraction, bioactivities, and their uses for food preservation. J Food Sci 79(7):1231–1249

    Article  CAS  Google Scholar 

  • Tsai GJ, Su WH (1999) Antibacterial activity of shrimp chitosan against Escherichia Coli. J Food Prot 62(3):239–243

    Article  CAS  Google Scholar 

  • Wang J, Vermerris W (2019) Antimicrobial nanomaterials derived from natural products—a review. A review. Materials 9(4):255

    Article  CAS  Google Scholar 

  • Wright P, Webster RG (2001) Orthomyxoviruses. In: Knipe DM, Howley PM, Griffin DE, Martin MA, Lamb RA, Roizman B (eds) Fields virology. Lippincott-Raven Publishers, Philadelphia, pp 1533–1579

    Google Scholar 

  • Xie Y, Liu X, Chen Q (2007) Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohydr Polym 69(1):142–147

    Article  CAS  Google Scholar 

  • Xie J-H, Shen M-Y, Xie M-Y, Nie S-P, Chen Y, Li C, Wang Y-X (2012) Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides. Carbohydr Polym 89(1):177–184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México under Grant IN202320.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moisés Bustamante-Torres or Emilio Bucio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bustamante-Torres, M., Romero-Fierro, D., Estrella-Nuñez, J., Hidalgo-Bonilla, S., Bucio, E. (2021). Natural Antimicrobial Materials. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Advanced Antimicrobial Materials and Applications. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-7098-8_6

Download citation

Publish with us

Policies and ethics