Skip to main content

Antimicrobial Fillers for Dental Restorative Materials

  • Chapter
  • First Online:
Advanced Antimicrobial Materials and Applications

Abstract

Primary cause of restoration failure in dentistry is mainly due to bacterial adhesion, proliferation, colonization and formation of biofilm onto the surface of restorative materials, the so-called secondary caries. Meanwhile, biofilms also affect the longevity of the materials. Chronic denture wearers suffer from denture stomatitis due to the inability of denture base resins to prevent the colonization of fungi Candida albicans. Nowadays, novel strategies incorporate nanofillers such as inorganic metal ion nanoparticles and organic nanoparticles into the restorative materials to formulate improved dental materials. Nanomaterials offer a new strategy for averting and remedying dental infections. Hence it is necessary to incorporate antimicrobial nanofillers in dental restorative materials to accomplish improved antimicrobial property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Shammery D, Michelogiannakis D, Ahmed ZU et al (2019) Scope of antimicrobial photodynamic therapy in orthodontics and related research: a review. Photodiagn Photodyn Ther 25:456–459

    Article  Google Scholar 

  • Al Zraikat H, Palamara JE, Messer HH, Burrow MF, Reynolds EC (2011) The incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass ionomer cement. Dent Mater 27:235–243

    Article  CAS  Google Scholar 

  • Alhajj N, Zakaria Z, Naharudin I, Ahsan F, Li W, Wong TW (2019) Critical physicochemical attributes of chitosan nanoparticles admixed lactose-PEG 3000 microparticles in pulmonary inhalation. Asian J Pharm Sci 15:374–384

    Article  Google Scholar 

  • Aljabo A, Xia W, Liaqat S, Khan MA, Knowles JC, Ashley P, Young AM (2015) Conversion, shrinkage, water sorption, flexural strength and modulus of re-mineralizing dental composites. Dent Mater 31:1279–1289

    Article  CAS  Google Scholar 

  • Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89:1175–1186

    Article  CAS  Google Scholar 

  • Amin WM, Al-Ali MH, Salim NA, Al-Tarawneh SK (2009) A new form of intraoral delivery of antifungal drugs for the treatment of denture-induced oral candidosis. Eur J Dent 3:257–266

    Article  Google Scholar 

  • Argueta-Figueroa L, Morales-Luckie RA, Scougall-Vilchis RJ, Olea-Mejía OF (2014) Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials. Prog Nat Sci Mater Int 24:321–328

    Article  CAS  Google Scholar 

  • Arunachalam A, Dhanapandian S, Manoharan C, Sivakumar G (2015) Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 138:105–112

    Article  CAS  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart, Article ID: 689419. https://doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  Google Scholar 

  • Baig MS, Fleming GJP (2015) Conventional glass-ionomer materials: a review of the developments in glass powder, polyacid liquid and the strategies of reinforcement. J Dent 43:897–912

    Article  CAS  Google Scholar 

  • Bapat RA, Dharmadhikari S, Chaubal TV, Amin MCIM, Bapat P, Gorain B, Choudhury H, Vincent C, Kesharwani P (2019) The potential of dendrimer in delivery of therapeutics for dentistry. Heliyon 5:e02544

    Article  Google Scholar 

  • Bellis CA, Addison O, Nobbs AH, Duckworth PF, Holder JA, Barbour ME (2018) Glass ionomer cements with milled, dry chlorhexidine hexametaphosphate filler particles to provide long-term antimicrobial properties with recharge capacity. Dent Mater 34:1717–1726

    Article  CAS  Google Scholar 

  • Berglundh T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, Chen S, Cochran D, Derks J, Figuero E (2018) Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol 89:S313–SS18

    Article  Google Scholar 

  • Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI (2006) Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 27:3995–4002

    Article  CAS  Google Scholar 

  • Beyth N, Farah S, Domb AJ, Weiss EI (2014) Antibacterial dental resin composites. React Funct Polym 75:81–88

    Article  CAS  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  • Bonesvoll P, Gjermo P (1978) A comparison between chlorhexidine and some quaternary ammonium compounds with regard to retention, salivary concentration and plaque-inhibiting effect in the human mouth after mouth rinses. Arch Oral Biol 23:289–294

    Article  CAS  Google Scholar 

  • Borkow G, Zhou SS, Page T, Gabbay J (2010) A novel anti-influenza copper oxide containing respiratory face mask. PLoS One 5:e11295

    Article  CAS  Google Scholar 

  • Boskey AL, Posner AS (1973) Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. J Phys Chem 77:2313–2317

    Article  CAS  Google Scholar 

  • Bourbia M, Ma D, Cvitkovitch DG, Santerre JP, Finer Y (2013) Cariogenic bacteria degrade dental resin composites and adhesives. J Dent Res 92:989–994

    Article  CAS  Google Scholar 

  • Boyd D, Towler MR (2005) The processing, mechanical properties and bioactivity of zinc based glass ionomer cements. J Mater Sci Mater Med 16:843–850

    Article  CAS  Google Scholar 

  • Camilleri J, Pitt Ford TR (2006) Mineral trioxide aggregate: a review of the constituents and biological properties of the material. Int Endod J 39:747–754

    Article  CAS  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554

    Article  CAS  Google Scholar 

  • Campos K d PL, Viana GM, Cabral LM, Portela MB, Junior RH, Cavalcante LM, Lourenço EJV, de Moraes Telles D (2020) Self-cured resin modified by quaternary ammonium methacrylates and chlorhexidine: cytotoxicity, antimicrobial, physical, and mechanical properties. Dent Mater 36:68–75

    Article  CAS  Google Scholar 

  • Cannon RD, Chaffin WL (1999) Oral colonization by Candida albicans. Crit Rev Oral Biol Med 10:359–383

    Article  CAS  Google Scholar 

  • Cao H, Liu X, Meng F, Chu PK (2011) Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 32:693–705

    Article  CAS  Google Scholar 

  • Cao W, Yu Z, Wang X, Li Q, Xiao Y, Li P, Wang L, Ye Z, Xing X (2018) Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond. J Mater Sci Mater Med 29:162

    Article  CAS  Google Scholar 

  • Carré G, Hamon E, Ennahar S, Estner M, Lett M-C, Horvatovich P, Gies J-P, Keller V, Keller N, Andre P (2014) TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Appl Environ Microbiol 80:2573–2581

    Article  CAS  Google Scholar 

  • Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:085103

    Article  CAS  Google Scholar 

  • Chatzistavrou X, Christopher Fenno J, Faulk D, Badylak S, Kasuga T, Boccaccini AR, Papagerakis P (2014) Fabrication and characterization of bioactive and antibacterial composites for dental applications. Acta Biomater 10:3723–3732

    Article  CAS  Google Scholar 

  • Chen M-H (2010) Update on dental nanocomposites. J Dent Res 89:549–560

    Article  CAS  Google Scholar 

  • Chen J, Zhu Y, Song Y, Lin W, Zhan J, He J, Zheng J, Zhong C, Shi X, Liu S (2017a) Preparation of an antimicrobial surface by direct assembly of antimicrobial peptide with its surface binding activity. J Mater Chem B 5:2407–2415

    Article  CAS  Google Scholar 

  • Chen R, Han Z, Huang Z, Karki J, Wang C, Zhu B, Zhang X (2017b) Antibacterial activity, cytotoxicity and mechanical behavior of nano-enhanced denture base resin with different kinds of inorganic antibacterial agents. Dent Mater J 36:693–699

    Article  CAS  Google Scholar 

  • Chen Y, Xueyan M, Wang F (2018) Preparation and drug release of PVA composite nanofibers loaded chitosan microsphere. Polym Sci Ser A 60:311–321

    Article  CAS  Google Scholar 

  • Cheng L, Weir MD, Xu HHK, Antonucci JM, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X (2012a) Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater 28:561–572

    Article  CAS  Google Scholar 

  • Cheng L, Weir MD, Xu HHK, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X (2012b) Antibacterial and physical properties of calcium–phosphate and calcium–fluoride nanocomposites with chlorhexidine. Dent Mater 28:573–583

    Article  CAS  Google Scholar 

  • Chladek G, Basa K, Mertas A, PakieÅ‚a W, Å»mudzki J, Bobela E, Król W (2016) Effect of storage in distilled water for three months on the antimicrobial properties of poly (methyl methacrylate) denture base material doped with inorganic filler. Materials 9:328

    Article  CAS  Google Scholar 

  • Chladek G, Pakiela K, Pakiela W, Zmudzki J, Adamiak M, Krawczyk C (2019a) Effect of antibacterial silver-releasing filler on the physicochemical properties of poly(methyl methacrylate) denture base material. Materials 12:41–46

    Article  CAS  Google Scholar 

  • Chladek G, PakieÅ‚a K, PakieÅ‚a W, Å»mudzki J, Adamiak M, Krawczyk C (2019b) Effect of antibacterial silver-releasing filler on the physicochemical properties of poly (methyl methacrylate) denture base material. Materials 12:4146

    Article  CAS  Google Scholar 

  • Cloutier M, Mantovani D, Rosei F (2015) Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol 33:637–652

    Article  CAS  Google Scholar 

  • Cocco AR, de Oliveira da Rosa WL, da Silva AF, Lund RG, Piva E (2015) A systematic review about antibacterial monomers used in dental adhesive systems: Current status and further prospects. Dent Mater 31:1345–1362

    Article  CAS  Google Scholar 

  • De Caluwé T, Vercruysse CWJ, Ladik I, Convents R, Heidi D, Martens LC, Verbeeck RMH (2017) Addition of bioactive glass to glass ionomer cements: effect on the physico-chemical properties and biocompatibility. Dent Mater 33:e186–e203

    Article  CAS  Google Scholar 

  • De Gee AJ, Pallav P, Werner A, Davidson CL (1990) Annealing as a mechanism of increasing wear resistance of composites. Dent Mater 6:266–270

    Article  Google Scholar 

  • de Oliveira Mima EG, Pavarina AC, Silva MM, Ribeiro DG, Vergani CE, Kurachi C, Bagnato VS (2011) Denture stomatitis treated with photodynamic therapy: five cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:602–608

    Article  Google Scholar 

  • Deveci C, Tuzuner T, Cinar C, Odabas ME, Buruk CK (2019) Short-term antibacterial activity and compressive strength of biodentine containing chlorhexidine/cetirimide mixtures. Niger J Clin Pract 22:227

    CAS  Google Scholar 

  • Dorocka-Bobkowska B, Zozulinska-Ziolkiewicz D, Wierusz-Wysocka B, Hedzelek W, Szumala-Kakol A, Budtz-Jörgensen E (2010) Candida-associated denture stomatitis in type 2 diabetes mellitus. Diabetes Res Clin Pract 90:81–86

    Article  Google Scholar 

  • Dorozhkin SV (2010) Amorphous calcium (ortho) phosphates. Acta Biomater 6:4457–4475

    Article  CAS  Google Scholar 

  • Drury JL, Chen YW, Plancich BJ, Taylor-Pashow KM, Hobbs DT, Wataha JC (2018) Release of calcium ions from particulate monosodium titanates for dental mineralization applications. Am J Dent 31:42B–48B

    Google Scholar 

  • Dye B, Thornton-Evans G, Li X, Iafolla T (2015) Dental caries and tooth loss in adults in the United States, 2011-2012. NCHS Data Brief 2015:197

    Google Scholar 

  • Eanes ED, Meyer JL (1977) The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif Tissue Res 23:259–269

    Article  CAS  Google Scholar 

  • Eiampongpaiboon T, Chung WO, Bryers JD, Chung K-H, Chan DCN (2015) Antibacterial activity of gold-titanates on Gram-positive cariogenic bacteria. Acta Biomater Odontol Scand 1:51–58

    Article  CAS  Google Scholar 

  • Eliades WAB (2002) Orthodontic material: scientific and clinical aspect. Thieme Medical Publishers, New York

    Google Scholar 

  • Feagin F, Thiradilok S (1979) Effects of magnesium and fluoride on ion exchange and acid resistance of enamel. J Oral Pathol Med 8:23–27

    Article  CAS  Google Scholar 

  • Fernandes GL, Delbem ACB, Do Amaral JG, Gorup LF, Fernandes RA, de Souza Neto FN, Souza JAS, Monteiro DR, Hunt AMA, Camargo ER (2018) Nanosynthesis of silver-calcium glycerophosphate: promising association against oral pathogens. Antibiotics 7:52

    Article  CAS  Google Scholar 

  • Ferreira I, Vidal CL, Botelho AL, Ferreira PS, da Costa Valente ML, Schiavon MA, Alves OL, Reis ACD (2020) Effect of nanomaterial incorporation on the mechanical and microbiological properties of dental porcelain. J Prosthet Dent 123:529

    Article  CAS  Google Scholar 

  • Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90:1847–1868

    Article  CAS  Google Scholar 

  • Fouda SM, Gad MM, Ellakany P, Al-Thobity AM, Al-Harbi FA, Virtanen JI, Raustia A (2019) The effect of nanodiamonds on candida albicans adhesion and surface characteristics of PMMA denture base material-an in vitro study. J Appl Oral Sci 2019:27

    Google Scholar 

  • Gad MM, Al-Thobity AM, Shahin SY, Alsaqer BT, Ali AA (2017a) Inhibitory effect of zirconium oxide nanoparticles on Candida albicans adhesion to repaired polymethyl methacrylate denture bases and interim removable prostheses: a new approach for denture stomatitis prevention. Int J Nanomedicine 12:5409

    Article  CAS  Google Scholar 

  • Gad MM, Fouda SM, Al-Harbi FA, Näpänkangas R, Raustia A (2017b) PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. Int J Nanomedicine 12:3801

    Article  CAS  Google Scholar 

  • Garcia IM, Leitune VCB, Balbinot GDS, Samuel SMW, Collares FM (2016) Influence of niobium pentoxide addition on the properties of glass ionomer cements. Acta Biomater Odontol Scand 2:138–143

    Article  CAS  Google Scholar 

  • Garoushi S, Vallittu P, Lassila L (2017) Hollow glass fibers in reinforcing glass ionomer cements. Dent Mater 33:e86–e93

    Article  CAS  Google Scholar 

  • Gerasymchuk Y, Lukowiak A, Wedzynska A, Kedziora A, Bugla-Ploskonska G, Piatek D, Bachanek T, Chernii V, Tomachynski L, Strek W (2016) New photosensitive nanometric graphite oxide composites as antimicrobial material with prolonged action. J Inorg Biochem 159:142–148

    Article  CAS  Google Scholar 

  • Gharatape A, Davaran S, Salehi R, Hamishehkar H (2016) Engineered gold nanoparticles for photothermal cancer therapy and bacteria killing. RSC Adv 6:111482–111516

    Article  CAS  Google Scholar 

  • Giannousi K, Lafazanis K, Arvanitidis J, Pantazaki A, Dendrinou-Samara C (2014) Hydrothermal synthesis of copper based nanoparticles: antimicrobial screening and interaction with DNA. J Inorg Biochem 133:24–32

    Article  CAS  Google Scholar 

  • Gogniat G, Dukan S (2007) TiO2 photocatalysis causes DNA damage via Fenton reaction-generated hydroxyl radicals during the recovery period. Appl Environ Microbiol 73:7740–7743

    Article  CAS  Google Scholar 

  • Gogniat G, Thyssen M, Denis M, Pulgarin C, Dukan S (2006) The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiol Lett 258:18–24

    Article  CAS  Google Scholar 

  • Goldberg M (2008) In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral Investig 12:1–8

    Article  Google Scholar 

  • Gong SQ, Niu LN, Kemp LK, Yiu CK, Ryou H, Qi YP, Blizzard JD, Nikonov S, Brackett MG, Messer RL, Wu CD, Mao J, Bryan Brister L, Rueggeberg FA, Arola DD, Pashley DH, Tay FR (2012) Quaternary ammonium silane-functionalized, methacrylate resin composition with antimicrobial activities and self-repair potential. Acta Biomater 8:3270–3282

    Article  CAS  Google Scholar 

  • Goulhen-Chollet F, Josset S, Keller N, Keller V, Lett M-C (2009) Monitoring the bactericidal effect of UV-A photocatalysis: a first approach through 1D and 2D protein electrophoresis. Catal Today 147:169–172

    Article  CAS  Google Scholar 

  • Gowri S, Rajiv Gandhi R, Sundrarajan M (2014) Structural, optical, antibacterial and antifungal properties of zirconia nanoparticles by biobased protocol. J Mater Sci Technol 30:782–790

    Article  CAS  Google Scholar 

  • Graves JL Jr, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, Barrick JE (2015) Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet 6:42

    Article  CAS  Google Scholar 

  • Gu YW, Yap AUJ, Cheang P, Khor KA (2005) Zirconia–glass ionomer cement––a potential substitute for Miracle Mix. Scr Mater 52:113–116

    Article  CAS  Google Scholar 

  • Gumy D, Morais C, Bowen P, Pulgarin C, Giraldo S, Hajdu R, Kiwi J (2006) Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: influence of the isoelectric point. Appl Catal B Environ 63:76–84

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, William Costerton J, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  Google Scholar 

  • Han L, Mu LI, Kazuaki N, Neamat AB, Akira O, Naoko H, Masaaki I (2002) Effect of fluoride mouth rinse on fluoride releasing and recharging from aesthetic dental materials. Dent Mater J 21:285–295

    Article  CAS  Google Scholar 

  • Hashimoto M, Ohno H, Sano H, Kaga M, Oguchi H (2003) In vitro degradation of resin–dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials 24:3795–3803

    Article  CAS  Google Scholar 

  • Haskell EW, Stanley HR, Chellemi J, Stringfellow H (1978) Direct pulp capping treatment: a long-term follow-up. J Am Dent Assoc 97:607–612

    Article  CAS  Google Scholar 

  • Hatton RA, Miller AJ, Silva SRP (2008) Carbon nanotubes: a multi-functional material for organic optoelectronics. J Mater Chem 18:1183–1192

    Article  CAS  Google Scholar 

  • Hench LL (2006) The story of Bioglass. J Mater Sci Mater Med 17:967–978

    Article  CAS  Google Scholar 

  • Hench LL, Xynos ID, Polak JM (2004) Bioactive glasses for in situ tissue regeneration. J Biomater Sci 15:543–562

    Article  CAS  Google Scholar 

  • Hu X, Yuyun Z, Zhijian H, Aditya S, Shuai H, Tao W, Wenqi L et al (2013) Gold nanorods core/AgPt alloy nanodots shell: a novel potent antibacterial nanostructure. Nano Res 6:822–835

    Article  CAS  Google Scholar 

  • Hu X, Huang YY, Wang Y, Wang X, Hamblin MR (2018) Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front Microbiol 9:1299

    Article  Google Scholar 

  • Ikemura K, Tay FR, Kouro Y, Endo T, Masahiro Y, Miyai K, Pashley DH (2003) Optimizing filler content in an adhesive system containing pre-reacted glass-ionomer fillers. Dent Mater 19:137–146

    Article  CAS  Google Scholar 

  • Imazato S (2003) Antibacterial properties of resin composites and dentin bonding systems. Dent Mater 19:449–457

    Article  CAS  Google Scholar 

  • JabÅ‚oÅ„ska-Stencel E, PakieÅ‚a W, Mertas A, Bobela E, Kasperski J, Chladek G (2018) Effect of silver-emitting filler on antimicrobial and mechanical properties of soft denture lining material. Materials 11:318

    Article  CAS  Google Scholar 

  • Jasmine S, Thangavelu A, Krishnamoorthy R et al (2020) Platelet concentrates as biomaterials in tissue engineering: a review. Regen Eng Transl Med. https://doi.org/10.1007/s40883-020-00165-z

  • Jia L, Qiu J, Lingqian D, Li Z, Liu H, Ge S (2017) TiO2 nanorod arrays as a photocatalytic coating enhanced antifungal and antibacterial efficiency of Ti substrates. Nanomedicine 12:761–776

    Article  CAS  Google Scholar 

  • Jo J-K, El-Fiqi A, Lee J-H, Kim D-A, Kim H-W, Lee H-H (2017) Rechargeable microbial anti-adhesive polymethyl methacrylate incorporating silver sulfadiazine-loaded mesoporous silica nanocarriers. Dent Mater 33:e361–ee72

    Article  CAS  Google Scholar 

  • Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486

    Article  CAS  Google Scholar 

  • Karasenkov Y, Frolov G, Pogorelsky I, Latuta N, Gusev A, Kuznetsov D, Leont'ev V (2015) Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes. IOP Conf Ser 98:012038

    Article  Google Scholar 

  • Kassaee MZ, Akhavan A, Sheikh N, Sodagar A (2008) Antibacterial effects of a new dental acrylic resin containing silver nanoparticles. J Appl Polym Sci 110:1699–1703

    Article  CAS  Google Scholar 

  • Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A 102:254–274

    Article  CAS  Google Scholar 

  • Khurshid Z, Zafar MS, Naseem M, Khan RS, Najeeb S (2018) Human oral defensins antimicrobial peptides: a future promising antimicrobial drug. Curr Pharm Des 24:1130–1137

    Article  CAS  Google Scholar 

  • Khvostenko D, Hilton TJ, Ferracane JL, Mitchell JC, Kruzic JJ (2016) Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent Mater 32:73–81

    Article  CAS  Google Scholar 

  • Konopka K, Goslinski T (2007) Photodynamic therapy in dentistry. J Dent Res 86:694–707

    Article  CAS  Google Scholar 

  • Kurt A, Erkose-Genc G, Uzun M, Emrence Z, Ustek D, Isik-Ozkol G (2017) The antifungal activity and cytotoxicity of silver containing denture base material. Niger J Clin Pract 20:290–295

    Article  CAS  Google Scholar 

  • Lai G, Li M (2012) Secondary caries. In: Contemporary approach to dental caries. InTech, London

    Chapter  Google Scholar 

  • Larsen IB, Munksgaard EG (1991) Effect of human saliva on surface degradation of composite resins. Eur J Oral Sci 99:254–261

    Article  CAS  Google Scholar 

  • Lear G, Lewis GD (2012) Microbial biofilms: current research and applications. Horizon Scientific Press, Poole

    Google Scholar 

  • Lendenmann U, Grogan J, Oppenheim FG (2000) Saliva and dental pellicle-a review. Adv Dent Res 14:22–28

    Article  CAS  Google Scholar 

  • Leung D, Spratt DA, Pratten J, Gulabivala K, Mordan NJ, Young AM (2005) Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials 26:7145–7153

    Article  CAS  Google Scholar 

  • Li Y, Li F, Zhang C, Gao B, Tan P, Mi B, Zhang Y, Cheng H, Liao H, Huo K (2015) The dimension of titania nanotubes influences implant success for osteoclastogenesis and osteogenesis patients. J Nanosci Nanotechnol 15:4136–4142

    Article  CAS  Google Scholar 

  • Li J, Dong Z, Lv F, Yu Q, Ma H, Yin J, Yi Z, Liu M, Chang J, Chengtie W (2016a) Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater 36:254–266

    Article  CAS  Google Scholar 

  • Li M, Zheng M, Zhu Y, Xia H, Yao M, Chu X, Wang X, Yang K, Yang M, Yu Z (2016b) Toward a molecular understanding of the antibacterial mechanism of copper-bearing titanium alloys against Staphylococcus aureus. Adv Healthc Mater 5:557–566

    Article  CAS  Google Scholar 

  • Li Z, Qiu J, Ling Qian D, Lu J, Liu H, Ge S (2017) TiO2 nanorod arrays modified Ti substrates promote the adhesion, proliferation and osteogenic differentiation of human periodontal ligament stem cells. Mater Sci Eng 76:684–691

    Article  CAS  Google Scholar 

  • Liang X, Söderling E, Liu F, He J, Lassila LVJ, Vallittu PK (2014) Optimizing the concentration of quaternary ammonium dimethacrylate monomer in bis-GMA/TEGDMA dental resin system for antibacterial activity and mechanical properties. J Mater Sci Mater Med 25:1387–1393

    Article  CAS  Google Scholar 

  • Liu R, Tang Y, Zeng L, Zhao Y, Zheng M, Sun Z, Xiang L, Ren L, Yang K (2018) In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dent Mater 34:1112–1126

    Article  CAS  Google Scholar 

  • Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47

    Article  CAS  Google Scholar 

  • Lynch CD, Opdam NJ, Hickel R, Brunton PA, Gurgan S, Kakaboura A, Shearer AC, Vanherle G, Wilson NHF (2014) Guidance on posterior resin composites: academy of operative dentistry-European section. J Dent 42:377–383

    Article  Google Scholar 

  • Maas MS, Alania Y, Natale LC, Rodrigues MC, Watts DC, Braga RR (2017) Trends in restorative composites research: what is in the future? Braz Oral Res 31:e55

    Article  Google Scholar 

  • Magalhães A-P-R, Francine-Couto LM, Alves C-RD-R-S, Estrela A, Estrela C, Carrião M-S, Bakuzis A-F, Lopes L-G (2016) Silver nanoparticles in resin luting cements: antibacterial and physiochemical properties. J Clin Exp Dent 8:e415

    Google Scholar 

  • Mahfouz M, Esaid AA (2014) Dental caries prevalence among 12–15 year old Palestinian children. Int Sch Res Notices 2014:785404

    Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15:1708–1715

    Article  CAS  Google Scholar 

  • Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098

    Article  CAS  Google Scholar 

  • Mangal U, Kim J-Y, Seo J-Y, Kwon J-S, Choi S-H (2019) Novel poly (methyl methacrylate) containing nanodiamond to improve the mechanical properties and fungal resistance. Materials 12:3438

    Article  CAS  Google Scholar 

  • Marovic D, Tarle Z, Hiller K-A, Müller R, Rosentritt M, Skrtic D, Schmalz G (2014) Reinforcement of experimental composite materials based on amorphous calcium phosphate with inert fillers. Dent Mater 30:1052–1060

    Article  CAS  Google Scholar 

  • Marsh PD (2004) Dental plaque as a microbial biofilm. Caries Res 38:204–211

    Article  CAS  Google Scholar 

  • Melo MAS, Weir MD, Rodrigues LKA, Xu HHK (2013) Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater 29:231–240

    Article  CAS  Google Scholar 

  • Millenbaugh NJ, Baskin JB, DeSilva MN, Elliott WR, Glickman RD (2015) Photothermal killing of Staphylococcus aureus using antibody-targeted gold nanoparticles. Int J Nanomed 10:1953–1960

    Article  CAS  Google Scholar 

  • Mirhashemi AH, Bahador A, Kassaee MZ, Daryakenari G, Ahmad-Akhoundi MS, Sodagar A (2013) Antimicrobial effect of nano-zinc oxide and nano-chitosan particles in dental composite used in orthodontics. J Med Bacteriol 2:1–10

    CAS  Google Scholar 

  • Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11

    Article  CAS  Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478

    Article  CAS  Google Scholar 

  • Mohammed FH, Niazy MA, El-Sharkawy DA (2018) The antibacterial activity of titanium dioxide nanoparticles incorporated into resin composite restoration (in vivo study). Al-Azhar Dent J Girls 5:173–180

    Article  Google Scholar 

  • Moheet IA, Luddin N, Rahman IA, Kannan TP, Ghani NRNA, Masudi SM (2019) Modifications of glass ionomer cement powder by addition of recently fabricated nano-fillers and their effect on the properties: a review. Eur J Dent 13(3):470–477

    Article  Google Scholar 

  • Moreno-Maldonado V, Acosta-Torres LS, Barceló-Santana FH, Vanegas-Lancón RD, Plata-Rodríguez ME, Castano VM (2012) Fiber-reinforced nanopigmented poly (methyl methacrylate) as improved denture base. J Appl Polym Sci 126:289–296

    Article  CAS  Google Scholar 

  • Morim S (2016) Antibacterial efficacy of gold-titanate nanoparticles as an intracanal medicament. MSD Thesis. University of Washington

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    Article  CAS  Google Scholar 

  • Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I (2008) Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater 4:432–440

    Article  CAS  Google Scholar 

  • Munoz Bonilla A, Marta Fernández G (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339

    Article  CAS  Google Scholar 

  • Nam KY (2017) Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles. J Adv Prosthodont 9:217–223

    Article  Google Scholar 

  • Nandal S, Ghalaut P, Shekhawat H, Gulati MS (2013) New era in denture base resins: a review. Dent J Adv Stud 1:136–143

    Article  Google Scholar 

  • Nascimento FD, Minciotti CL, Geraldeli S, Carrilho MR, Pashley DH, Tay FR, Nader HB, Salo T, Tjäderhane L, Tersariol ILS (2011) Cysteine cathepsins in human carious dentin. J Dent Res 90:506–511

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Nguyen S, Hiorth M (2015) Advanced drug delivery systems for local treatment of the oral cavity. Ther Deliv 6:595–608

    Article  CAS  Google Scholar 

  • Odagiri K, Sawada T, Hori N, Seimiya K, Otsuji T, Hamada N, Kimoto K (2012) Evaluation of denture base resin after disinfection method using reactive oxygen species (ROS). Dent Mater J 31:443–448

    Article  CAS  Google Scholar 

  • Ohashi S, Saku S, Yamamoto K (2004) Antibacterial activity of silver inorganic agent YDA filler. J Oral Rehabil 31:364–367

    Article  CAS  Google Scholar 

  • Olenin AY, Lisichkin GV (2011) Metal nanoparticles in condensed media: preparation and the bulk and surface structural dynamics. Russ Chem Rev 80:605

    Article  CAS  Google Scholar 

  • Oliva A, Ragione FD, Salerno A, Riccio V, Gianpaolo T, Cozzolino A, Salvatore D'A, Pontoni G, Zappia V (1996) Biocompatibility studies on glass ionomer cements by primary cultures of human osteoblasts. Biomaterials 17:1351–1356

    Article  CAS  Google Scholar 

  • Onaizi SA, Leong SS (2011) Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv 29:67–74

    Article  CAS  Google Scholar 

  • Padovani GC, Feitosa VP, Sauro S, Tay FR, Durán G, Paula AJ, Durán N (2015) Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol 33:621–636

    Article  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Pallan S, Araujo MVF, Cilli R, Prakki A (2012) Mechanical properties and characteristics of developmental copolymers incorporating catechin or chlorhexidine. Dent Mater 28:687–694

    Article  CAS  Google Scholar 

  • Pan H, Liu XY, Tang R, Hong Yao X (2010) Mystery of the transformation from amorphous calcium phosphate to hydroxyapatite. Chem Commun 46:7415–7417

    Article  CAS  Google Scholar 

  • Pang H, Lu Q, Li Y, Gao F (2009) Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Chem Commun 2009:7542–7544

    Article  CAS  Google Scholar 

  • Papacchini F, Goracci C, Sadek FT, Monticelli F, Garcia-Godoy F, Ferrari M (2005) Microtensile bond strength to ground enamel by glass-ionomers, resin-modified glass-ionomers, and resin composites used as pit and fissure sealants. J Dent 33:459–467

    Article  CAS  Google Scholar 

  • Park JW, Ferracane JL (2014) Water aging reverses residual stresses in hydrophilic dental composites. J Dent Res 93:195–200

    Article  CAS  Google Scholar 

  • Peltzer K, Hewlett S, Yawson AE, Moynihan P, Preet R, Wu F, Guo G, Arokiasamy P, Snodgrass JJ, Chatterji S, Engelstad ME, Kowal P (2014) Prevalence of loss of all teeth (edentulism) and associated factors in older adults in China, Ghana, India, Mexico, Russia and South Africa. Int J Environ Res Public Health 11:11308–11324

    Article  Google Scholar 

  • Perinelli DR, Fagioli L, Campana R et al (2018) Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci 117:8–20

    Article  CAS  Google Scholar 

  • Phillips RW, Anusavice KJ (2013) Phillips’ science of dental materials. Elsevier, London

    Google Scholar 

  • Poorzandpoush K, Omrani L-R, Jafarnia SH, Golkar P, Atai M (2017) Effect of addition of Nano hydroxyapatite particles on wear of resin modified glass ionomer by tooth brushing simulation. J Clin Exp Dent 9:e372

    Google Scholar 

  • Poosti M, Ramazanzadeh BA, Zebarjad M, Javadzadeh P, Naderinasab M, Shakeri MT (2013) Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthod 35:676–679

    Article  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart, Article ID: 963961. https://doi.org/10.1155/2014/963961

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham. ISBN 978-3-319-42989-2

    Book  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature Singapore Pte Ltd., Singapore. ISBN 978-3-319-68423-9

    Book  Google Scholar 

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart. https://doi.org/10.1155/2013/431218

  • Profeta AC (2014) Dentine bonding agents comprising calcium-silicates to support proactive dental care: origins, development and future. Dent Mater J 33:443–452

    Article  CAS  Google Scholar 

  • Qiu J, Li J, Wang S, Ma B, Zhang S, Guo W, Zhang X, Tang W, Sang Y, Liu H (2016) TiO2 nanorod array constructed nanotopography for regulation of mesenchymal stem cells fate and the realization of location-committed stem cell differentiation. Small 12:1770–1778

    Article  CAS  Google Scholar 

  • Qu J, Huang Y, Lv X (2019) Crisis of antimicrobial resistance in China: now and the future. Front Microbiol 10:2240

    Article  Google Scholar 

  • Raafat D, Sahl H-G (2009) Chitosan and its antimicrobial potential–a critical literature survey. Microb Biotechnol 2:186–201

    Article  CAS  Google Scholar 

  • Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, Masood Ul Hasan M (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80

    Article  CAS  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    Article  CAS  Google Scholar 

  • Rago I, Chandraiahgari CR, Bracciale MP, De Bellis G, Zanni E, Guidi MC, Sali D, Broggi A, Palleschi C, Sarto MS (2014) Zinc oxide microrods and nanorods: different antibacterial activity and their mode of action against Gram-positive bacteria. RSC Adv 4:56031–56040

    Article  CAS  Google Scholar 

  • Ranjita RM (2017) Metal nanoparticles in pharma, 1st edn. Springer, Berlin

    Google Scholar 

  • Rastelli ANS, Jacomassi DP, Faloni APS, Queiroz TP, Rojas SS, Bernardi MINÊB, Bagnato VS, Hernandes AÔC (2012) The filler content of the dental composite resins and their influence on different properties. Microsc Res Tech 75:758–765

    Article  CAS  Google Scholar 

  • Redding SW, Kirkpatrick WR, Saville S, Coco BJ, White W, Fothergill A, Rinaldi M, Eng T, Patterson TF, Lopez-Ribot J (2003) Multiple patterns of resistance to fluconazole in Candida glabrata isolates from a patient with oropharyngeal candidiasis receiving head and neck radiation. J Clin Microbiol 41:619–622

    Article  CAS  Google Scholar 

  • Ren G, Hu D, Cheng EWC (2009) Int J Antimicrob Agents 33:587–590

    Article  CAS  Google Scholar 

  • Renvert S, Rutger Persson G, Pirih FQ, Camargo PM (2018) Peri-implant health, peri-implant mucositis, and peri-implantitis: case definitions and diagnostic considerations. J Clin Periodontol 45:S278–SS85

    Article  Google Scholar 

  • Reston EG, de Souza Costa CA (2009) Scanning electron microscopy evaluation of the hard tissue barrier after pulp capping with calcium hydroxide, mineral trioxide aggregate (MTA) or ProRoot MTA. Aust Endod J 35:78–84

    Article  Google Scholar 

  • Roberts HW, Toth JM, Berzins DW, Charlton DG (2008) Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater 24:149–164

    Article  CAS  Google Scholar 

  • Rosen P, Clem D, Cochran DL, Froum S, McAllister B, Renvert S, Wang HL (2013) Peri-implant mucositis and peri-implantitis: a current understanding of their diagnoses and clinical implications. J Periodontol 84:436–443

    Article  Google Scholar 

  • Rosenbaum J, Versace DL, Abbad-Andallousi S, Pires R, Azevedo C, Cénédese P, Dubot P (2017) Antibacterial properties of nanostructured Cu–TiO 2 surfaces for dental implants. Biomater Sci 5:455–462

    Article  CAS  Google Scholar 

  • Saafan A, Zaazou MH, Sallam MK, Mosallam O, El Danaf HA (2018) Assessment of photodynamic therapy and nanoparticles effects on caries models. Open Access Macedon J Med Sci 6:1289

    Article  Google Scholar 

  • Sakaguchi R (2005) Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations. Summary of discussion from the Portland Composites Symposium (POCOS) June 17-19, 2004, Oregon Health & Science University, Portland, Oregon. Dent Mater 21:3–6

    Article  Google Scholar 

  • Sakaguchi RL, Powers JM, Craig S (2006) Restorative dental materials. Mosby, St. Louis

    Google Scholar 

  • Sani ES, Lara RP, Aldawood Z, Bassir SH, Nguyen D, Kantarci A, Intini G, Annabi N (2019) An antimicrobial dental light curable bioadhesive hydrogel for treatment of peri-implant diseases. Matter 1:926–944

    Article  Google Scholar 

  • Sato M, Ohshima T, Maeda N, Ohkubo C (2013) Inhibitory effect of coated mannan against the adhesion of Candida biofilms to denture base resin. Dent Mater J 32:355–360

    Article  CAS  Google Scholar 

  • Schnaider L, Ghosh M, Bychenko D, Grigoriants I, Ya’ari S, Antsel TS, Matalon S, Sarig R, Brosh T, Pilo R (2019) Enhanced nanoassembly-incorporated antibacterial composite materials. ACS Appl Mater Interfaces 11:21334–21342

    Article  CAS  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767

    CAS  Google Scholar 

  • Sevinç A, Berdan A, Hanley L (2010) Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B Appl Biomater 94:22–31

    Google Scholar 

  • Shahid S, Hassan U, Billington RW, Hill RG, Anderson P (2014) Glass ionomer cements: effect of strontium substitution on esthetics, radiopacity and fluoride release. Dent Mater 30:308–313

    Article  CAS  Google Scholar 

  • Shin S-Y, Park H-N, Kim K-H, Lee M-H, Choi YS, Park Y-J, Lee Y-M, Young K, Rhyu I-C, Han S-B (2005) Biological evaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol 76:1778–1784

    Article  CAS  Google Scholar 

  • Siqueira JF (2001) Strategies to treat infected root canals. CDA 29:825–838

    Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  • Skrtic D, Antonucci JM, Eanes ED, Eichmiller FC, Schumacher GE (2000) Physicochemical evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates. J Biomed Mater Res 53:381–391

    Article  CAS  Google Scholar 

  • Skrtic D, Antonucci JM, Eanes ED, Brunworth RT (2002) Silica-and zirconia-hybridized amorphous calcium phosphate: Effect on transformation to hydroxyapatite. J Biomed Mater Res 59:597–604

    Article  CAS  Google Scholar 

  • Slenters TV, Hauser-Gerspach I, Daniels AU, Fromm KM (2008) Silver coordination compounds as light-stable, nano-structured and anti-bacterial coatings for dental implant and restorative materials. J Mater Chem 18:5359–5362

    Article  CAS  Google Scholar 

  • Sodagar A, Bahador A, Khalil S, Shahroudi AS, Kassaee MZ (2013) The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J Prosthodont Res 57:15–19

    Article  Google Scholar 

  • Sodagar A, Akhoundi MSA, Bahador A, Jalali YF, Behzadi Z, Elhaminejad F, Mirhashemi AH (2017) Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dent Press J Orthodont 22:67–74

    Article  Google Scholar 

  • Song W, Ge S (2019) Application of antimicrobial nanoparticles in dentistry. Molecules 24:1033

    Article  CAS  Google Scholar 

  • Spanovic N, Par M, Marovic D, Sever EK, Gamulin O, Tarle Z (2017) Development of experimental bioactive composites with reduced water sorption. In: 3rd international congress of the school of dental medicine. University of Zagreb, Zagreb

    Google Scholar 

  • Stanley HR (1989) Pulp capping: conserving the dental pulp—can it be done? Is it worth it? Oral Surg Oral Med Oral Pathol 68:628–639

    Article  CAS  Google Scholar 

  • Stansbury JW (2000) Curing dental resins and composites by photopolymerization. J Esthet Restor Dent 12:300–308

    Article  CAS  Google Scholar 

  • Åžuhani MF, BăciuÅ£ G, BăciuÅ£ M, Åžuhani R, Bran S (2018) Current perspectives regarding the application and incorporation of silver nanoparticles into dental biomaterials. Clujul Med 91:274

    Google Scholar 

  • Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater 4(3):53–59

    Google Scholar 

  • Takagi S, Chow LC, Hirayama S, Eichmiller FC (2003) Properties of elastomeric calcium phosphate cement–chitosan composites. Dent Mater 19:797–804

    Article  CAS  Google Scholar 

  • Takasaki AA, Aoki A, Mizutani K, Schwarz F, Sculean A, Wang CY et al (2009) Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases. Periodontol 51:109–140

    Article  Google Scholar 

  • Tanaka CB, Lopes DP, Kikuchi LNT, Moreira MS, Catalani LH, Braga RR, Kruzic JJ, Gonçalves F (2020) Development of novel dental restorative composites with dibasic calcium phosphate loaded chitosan fillers. Dent Mater 36:551–559

    Article  CAS  Google Scholar 

  • Tarle Z, Par M (2018) Bioactive dental composite materials. Med Sci 45:83–100

    Google Scholar 

  • Tezvergil-Mutluay A, Seseogullari-Dirihan R, Feitosa VP, Cama G, Brauer DS, Sauro S (2017) Effects of composites containing bioactive glasses on demineralized dentin. J Dent Res 96:999–1005

    Article  CAS  Google Scholar 

  • Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM (2013) Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol J 8:97–109

    Article  CAS  Google Scholar 

  • Thampi VVA, Prabhu M, Kavitha K, Manivasakan P, Prabu P, Rajendran V, Shankar S, Kulandaivelu P (2014) Hydroxyapatite, alumina/zirconia, and nanobioactive glass cement for tooth-restoring applications. Ceram Int 40:14355–14365

    Article  CAS  Google Scholar 

  • Thomas R, Snigdha S, Bhavitha KB, Babu S, Ajith A, Radhakrishnan EK (2018) Biofabricated silver nanoparticles incorporated polymethyl methacrylate as a dental adhesive material with antibacterial and antibiofilm activity against Streptococcus mutans. Biotech 8:404

    Google Scholar 

  • Tiller JC, Liao C-J, Lewis K, Klibanov AM (2001) Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci 98:5981–5985

    Article  CAS  Google Scholar 

  • Türkün LSE, Türkün M, Rul FE, Ates M, Brugger S (2008) Long-term antibacterial effects and physical properties of a chlorhexidine-containing glass ionomer cement. J Esthet Restor Dent 20:29–44

    Article  Google Scholar 

  • Turner JE, Moore DW, Shaw BS (1975) Prevalence and antibiotic susceptibility of organisms isolated from acute soft-tissue abscesses secondary to dental caries. Oral Surg Oral Med Oral Pathol 39:848–857

    Article  CAS  Google Scholar 

  • Uzunoglu E, Bicer AZY, Dolapci I, Dogan A (2014) Biofilm-forming ability and adherence to poly-(methyl-methacrylate) acrylic resin materials of oral Candida albicans strains isolated from HIV positive subjects. J Adv Prosthodont 6:30–34

    Article  Google Scholar 

  • Venhoven BAM, De Gee AJ, Davidson CL (1993) Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins. Biomaterials 14:871–875

    Article  CAS  Google Scholar 

  • Villegas A, Natalia MJSC, Ajá MS, Rocca DM, Becerra MC, Molina GF, Palma SD (2019) Novel antibacterial resin-based filling material containing nanoparticles for the potential one-step treatment of caries. J Healthc Eng 2019:8

    Google Scholar 

  • Von Eiff C, Arciola CR, Lucio M, Becker K, Campoccia D (2006) Emerging Staphylococcus species as new pathogens in implant infections. Int J Artif Organs 29:360–367

    Article  Google Scholar 

  • Wahab R, Mishra A, Soon-Il Y, Hwang IH, Mussarat J, Al-Khedhairy AA, Kim Y-S, Shin H-S (2012) Fabrication, growth mechanism and antibacterial activity of ZnO micro-spheres prepared via solution process. Biomass Bioenergy 39:227–236

    Article  CAS  Google Scholar 

  • Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Wei L (2016) Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazard Mater 308:328–334

    Article  CAS  Google Scholar 

  • Webb BC, Thomas CJ, Willcox MDP, Harty DWS, Knox KW (1998) Candida-associated denture stomatitis. Aetiology and management: a review: Part 1. Factors influencing distribution of candida species in the oral cavity. Aust Dent J 43:45–50

    Article  CAS  Google Scholar 

  • Wei G, Sun F, Liu F, Cao L, Yang J, Chen Y (2019) Antimicrobial resistance surveillance and prediction of gram-negative bacteria based on antimicrobial consumption in a hospital setting: a 15-year retrospective study. Medicine (Baltimore) 98:e17157

    Article  CAS  Google Scholar 

  • Weng S, Xu Z, Liu G, Guan Y, Wu F, Luo Y (2018) Synthesis, characterization, antibacterial activity in dark and in vitro cytocompatibility of Ag-incorporated TiO 2 microspheres with high specific surface area. J Mater Sci 29:50

    Google Scholar 

  • Whitesides GM (2003) The ‘right’ size in nanobiotechnology. Nat Biotechnol 21:1161–1165

    Article  CAS  Google Scholar 

  • Wiegand A, Buchalla W, Attin T (2007) Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 23:343–362

    Article  CAS  Google Scholar 

  • Wood NJ, Jenkinson HF, Davis SA, Mann S, O’Sullivan DJ, Barbour ME (2015) Chlorhexidine hexametaphosphate nanoparticles as a novel antimicrobial coating for dental implants. J Mater Sci Mater Med 26:201

    Article  CAS  Google Scholar 

  • Xie D, Weng Y, Guo X, Zhao J, Gregory RL, Zheng C (2011) Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dent Mater 27:487–496

    Article  CAS  Google Scholar 

  • Xu HHK, Moreau JL, Sun L, Chow LC (2011) Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater 27:762–769

    Article  CAS  Google Scholar 

  • Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14. https://doi.org/10.5101/nbe.v9i1.p9-14

    Article  CAS  Google Scholar 

  • Yan N, Chen X (2015) Sustainability: don’t waste seafood waste. Nature 524:155–157

    Article  CAS  Google Scholar 

  • Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78

    Article  CAS  Google Scholar 

  • Yli-Urpo H, Lassila LVJ, Närhi T, Vallittu PK (2005) Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass. Dent Mater 21:201–209

    Article  CAS  Google Scholar 

  • Zamperini CA, de Lima Carneiro H, Rangel EC, Cruz NC, Vergani CE, Machado AL (2013) In vitro adhesion of Candida glabrata to denture base acrylic resin modified by glow-discharge plasma treatment. Mycoses 56:134–144

    Article  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489

    Article  CAS  Google Scholar 

  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Therap 83:761–769

    Article  CAS  Google Scholar 

  • Zhang K, Li F, Imazato S, Cheng L, Liu H, Arola DD, Bai Y, Xu HHK (2013) Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J Biomed Mater Res Pt B 101:929–938

    Article  CAS  Google Scholar 

  • Zhang K, Cheng L, Weir MD, Bai Y-X, Xu HHK (2016) Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite. Int J Oral Sci 8:45–53

    Article  CAS  Google Scholar 

  • Zoergiebel J, Ilie N (2013) Evaluation of a conventional glass ionomer cement with new zinc formulation: effect of coating, aging and storage agents. Clin Oral Investig 17:619–626

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jasmine, S., Krishnamoorthy, R., Gnanasagar (2021). Antimicrobial Fillers for Dental Restorative Materials. In: Inamuddin, Ahamed, M.I., Prasad, R. (eds) Advanced Antimicrobial Materials and Applications. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-7098-8_14

Download citation

Publish with us

Policies and ethics