Skip to main content

Phytoremediation: A Synergistic Interaction Between Plants and Microbes for Removal of Unwanted Chemicals/Contaminants

Part of the Rhizosphere Biology book series (RHBIO)

Abstract

Environmental pollution with obnoxious contaminants is detrimental to plant growth and poses health hazards to humans and other life forms. Thus, remediation of such antagonistic environment has become a key issue for environmentalists all around the world. Phytoremediation, a cooperative association between plants and microbes, is an emerging in situ cost-effective technology and provides a viable option in the treatment of such contaminated environments. Present chapter emphasizes on plant–microbes interactions during phytoremediation and how such beneficial interactions lead to improved plant growth and contamination free environment.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-7094-0_11
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-7094-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 11.1

References

  • Abbaslou H, Bakhtiari S, Hashemi SS (2018) Rehabilitation of iron ore mine soil contaminated with heavy metals using rosemary phytoremediation-assisted mycorrhizal arbuscular fungi bioaugmentation and fibrous clay mineral immobilization. Iran J Sci Technol, Trans A: Sci 42(2):431–441

    CrossRef  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22(11):8148–8162

    CAS  CrossRef  Google Scholar 

  • Afegbua SL, Batty LC (2019) Effect of plant growth promoting bacterium; Pseudomonas putida UW4 inoculation on phytoremediation efficacy of monoculture and mixed culture of selected plant species for PAH and lead spiked soils. Int J Phytoremediation 21(3):200–208

    CAS  CrossRef  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014a) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    CAS  CrossRef  Google Scholar 

  • Afzal M, Shabir G, Tahseen R, Islam EU, Iqbal S, Khan QM, Khalid ZM (2014b) Endophytic Burkholderia sp. strain Ps JN improves plant growth and phytoremediation of soil irrigated with textile effluent. Clean: Soil, Air, Water 42(9):1304–1310

    CAS  Google Scholar 

  • Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563:693–670

    CrossRef  CAS  Google Scholar 

  • Ahmadpour P, Ahmadpour F, Mahmud TMM, Abdu A, Soleimani M, Tayefeh FH (2012) Phytoremediation of heavy metals: a green technology. Afr J Biotechnol 11(76):14036–14043

    CAS  Google Scholar 

  • Ahsan MT, Saeed A, Mustafa T, Afzal M (2018) Augmentation with potential endophytes enhances phytostabilization of Cr in contaminated soil. Environ Sci Pollut Res 25(7):7021–7032

    CAS  CrossRef  Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2009) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767–2776

    CrossRef  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881

    CAS  CrossRef  Google Scholar 

  • Das A, Osborne JW (2018) Enhanced lead uptake by an association of plant and earthworm bioaugmented with bacteria. Pedosphere 28(2):311–322

    CrossRef  Google Scholar 

  • Armendariz AL, Talano MA, Nicotra MFO, Escudero L, Breser ML, Porporatto C, Agostini E (2019) Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiol Biochem 138:26–35

    CAS  CrossRef  Google Scholar 

  • Aroua I, Abid G, Souissi F, Mannai K, Nebli H, Hattab S, Borgi Z, Jebara M (2019) Identification of two pesticide-tolerant bacteria isolated from Medicago sativa nodule useful for organic soil phytostabilization. Int Microbiol 22(1):111–120

    CAS  CrossRef  Google Scholar 

  • Arslan M, Imran A, Khan QM, Afzal M (2017) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res 24(5):4322–4336

    CrossRef  Google Scholar 

  • Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS (2017) Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manag 198:132–143

    CAS  CrossRef  Google Scholar 

  • Aslund MW, Zeeb BA (2010) A review of recent research developments into the potential for phytoextraction of persistent organic pollutants (POPs) from weathered, contaminated soil. In: Application of phytotechnologies for cleanup of industrial, agricultural, and wastewater contamination. Springer, Dordrecht, pp 35–59

    CrossRef  Google Scholar 

  • Balazs HE, Schmid CA, Feher I, Podar D, Szatmari PM, Marincaş O, Zoltan R, Balazs ZR, Schroder P (2018) HCH phytoremediation potential of native plant species from a contaminated urban site in Turda, Romania. J Environ Manag 223:286–296

    CrossRef  CAS  Google Scholar 

  • Balseiro-Romero M, Gkorezis P, Kidd PS, Van Hamme J, Weyens N, Monterroso C, Vangronsveld J (2017) Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation. Sci Total Environ 581:676–688

    CrossRef  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444

    CAS  CrossRef  Google Scholar 

  • Becerra-Castro C, Prieto-Fernandez A, Kidd PS, Weyens N, Rodriguez-Garrido B, Touceda-Gonzalez M, Acra MJ, Vangronsveld J (2013) Improving performance of Cytisus striatus on substrates contaminated with hexachlorocyclohexane (HCH) isomers using bacterial inoculants: developing a phytoremediation strategy. Plant Soil 362(1–2):247–260

    CAS  CrossRef  Google Scholar 

  • Bedard DL, Unterman R, Bopp LH, Brennan MJ, Haberl ML, Johnson C (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol 51(4):761–768

    CAS  CrossRef  Google Scholar 

  • Boudh S, Singh JS (2019) Pesticide contamination: environmental problems and remediation strategies. In: Emerging and eco-friendly approaches for waste management. Springer, Singapore, pp 245–269

    CrossRef  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, De Lorenzo V, Dowling DN, O’gara F (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61(5):1946–1952

    CAS  CrossRef  Google Scholar 

  • Burges A, Epelde L, Blanco F, Becerril JM, Garbisu C (2017) Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil. Sci Total Environ 584:329–338

    CrossRef  CAS  Google Scholar 

  • Cao XF, Liu LP (2015) Using microorganisms to facilitate phytoremediation in mine tailings with multi heavy metals. In: Advanced materials research, vol 1094. Trans Tech Publications, Zurich, pp 437–440

    Google Scholar 

  • Carson RL (1962) Silent spring. Riverside Press, Cambridge

    Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste. In: Parr JF (ed) Land treatment of hazardous waters. OSTI GOV US Department of Energy N.P, 1983

    Google Scholar 

  • Chen Y, Yang W, Chao Y, Wang S, Tang YT, Qiu RL (2017) Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant Soil 413(1–2):203–216

    CAS  Google Scholar 

  • Chirakkara RA, Cameselle C, Reddy KR (2016) Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev Environ Sci Biotechnol 15(2):299–326

    CAS  CrossRef  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    CAS  CrossRef  Google Scholar 

  • Coninx L, Martinova V, Rineau F (2017) Mycorrhiza-assisted phytoremediation. In: Advances in botanical research, vol 83. Academic Press, San Diego, pp 127–188

    Google Scholar 

  • Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017) Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ Technol Innov 8:309–326

    CrossRef  Google Scholar 

  • da Conceicao Gomes MA, Hauser-Davis RA, Suzuki MS, Vitoria AP (2017) Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol Environ Saf 140:55–64

    CrossRef  CAS  Google Scholar 

  • Dardanelli MS, Manyani H, Gonzalez-Barroso S, Rodriguez-Carvajal MA, Gil-Serrano AM, Espuny MR, Lopez-Baena FJ, Bellogin RA, Megias M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328(1–2):483–493

    CAS  CrossRef  Google Scholar 

  • Doty SL, Freeman JL, Cohu CM, Burken JG, Firrincieli A, Simon A, Khan Z, Iseberands JG, Lukas J, Blaylock MJ (2017) Enhanced degradation of TCE on a superfund site using endophyte-assisted poplar tree phytoremediation. Environ Sci Technol 51(17):10050–10058

    CAS  CrossRef  Google Scholar 

  • Farid M, Ali S, Akram NA, Rizwan M, Abbas F, Bukhari SAH, Saeed R (2017) Phyto-management of Cr-contaminated soils by sunflower hybrids: physiological and biochemical response and metal extractability under Cr stress. Environ Sci Pollut Res 24(20):16845–16859

    CAS  CrossRef  Google Scholar 

  • Fatima K, Afzal M, Imran A, Khan QM (2015) Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull Environ Contam Toxicol 94(3):314–320

    CAS  CrossRef  Google Scholar 

  • Federici E, Giubilei MA, Covino S, Zanaroli G, Fava F, D’Annibale A, Petruccioli M (2012) Addition of maize stalks and soybean oil to a historically PCB-contaminated soil: effect on degradation performance and indigenous microbiota. New Biotechnol 30(1):69–79

    CAS  CrossRef  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86(4):528–534

    CAS  Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185

    CAS  CrossRef  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):214–231

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    CAS  CrossRef  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    CAS  CrossRef  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26(5–6):227–242

    CAS  CrossRef  Google Scholar 

  • Gregoraszczuk EL, Ptak A (2013) Endocrine-disrupting chemicals: some actions of POPs on female reproduction. Int J Endocrinol 2013:828532

    Google Scholar 

  • Grobelak A, Kokot P, Hutchison D, Grosser A, Kacprzak M (2018) Plant growth-promoting rhizobacteria as an alternative to mineral fertilizers in assisted bioremediation-sustainable land and waste management. J Environ Manag 227:1–9

    CAS  CrossRef  Google Scholar 

  • Gu CS, Liu LQ, Deng YM, Zhang YX, Wang ZQ, Yuan HY, Huang SZ (2017) De novo characterization of the Iris lactea var. chinensis transcriptome and an analysis of genes under cadmium or lead exposure. Ecotoxicol Environ Saf 144:507–513

    CAS  CrossRef  Google Scholar 

  • Gupta P, Rani R, Usmani Z, Chandra A, Kumar V (2019) The role of plant-associated bacteria in phytoremediation of trace metals in contaminated soils. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 69–76

    CrossRef  Google Scholar 

  • Haslmayr HP, Meißner S, Langella F, Baumgarten A, Geletneky J (2014) Establishing best practice for microbially aided phytoremediation. Environ Sci Pollut Res 21(11):6765–6774

    CrossRef  Google Scholar 

  • He L, Yang H, Yu Z, Tang J, Xu L, Chen X (2014) Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels. J Environ Sci 26(10):2034–2040

    CrossRef  Google Scholar 

  • Hong Y, Liao D, Chen J, Khan S, Su J, Li H (2015) A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation. Environ Sci Pollut Res 22(9):7071–7081

    CAS  CrossRef  Google Scholar 

  • Horri K, Alfonso S, Cousin X, Munschy C, Loizeau V, Aroua S, Begout ML, Ernande B (2018) Fish life-history traits are affected after chronic dietary exposure to an environmentally realistic marine mixture of PCBs and PBDEs. Sci Total Environ 610:531–545

    CrossRef  CAS  Google Scholar 

  • Hou J, Liu W, Wu L, Ge Y, Hu P, Li Z, Christie P (2019) Rhodococcus sp. NSX2 modulates the phytoremediation efficiency of a trace metal-contaminated soil by reshaping the rhizosphere microbiome. Appl Soil Ecol 133:62–69

    CrossRef  Google Scholar 

  • Hussain A, Kamran MA, Javed MT, Hayat K, Farooq MA, Ali N, Ali M, Manghwar H, Jan F, Chaudhary HJ (2019) Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environ Exp Bot 159:23–33

    CAS  CrossRef  Google Scholar 

  • Ibanez SG, Alderete LGS, Medina MI, Agostini E (2012) Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response. Environ Sci Pollut Res 19(5):1555–1562

    CAS  CrossRef  Google Scholar 

  • Inostroza PA, Wicht AJ, Huber T, Nagy C, Brack W, Krauss M (2016) Body burden of pesticides and wastewater-derived pollutants on freshwater invertebrates: method development and application in the Danube River. Environ Pollut 214:77–85

    CAS  CrossRef  Google Scholar 

  • Jamieson AJ, Malkocs T, Piertney SB, Fujii T, Zhang Z (2017) Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evol 1(3):1

    CrossRef  Google Scholar 

  • Jha P, Jha PN (2015) Plant-microbe partnerships for enhanced biodegradation of polychlorinated biphenyls. In: Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 95–110

    Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43(15):5884–5889

    CAS  CrossRef  Google Scholar 

  • Kerfahi D, Ogwu MC, Ariunzaya D, Balt A, Davaasuren D, Enkhmandal O, Purevsuren T, Batbaatar A, Tibbett M, Undrakhbold S, Boldgiv B (2019) Metal-tolerant fungal communities are delineated by high zinc, lead, and copper concentrations in Metalliferous Gobi Desert Soils. Microb Ecol 79:420. https://doi.org/10.1007/s00248-019-01405-8

    CAS  CrossRef  Google Scholar 

  • Khan A, Sharif M, Ali A, Shah SNM, Mian IA, Wahid F, Jan B, Adnan M, Nawaz S, Ali N (2014) Potential of AM fungi in phytoremediation of heavy metals and effect on yield of wheat crop. Am J Plant Sci 5(11):1578–1586

    CrossRef  CAS  Google Scholar 

  • Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A (2017) Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils. Int J Phytoremediation 19(6):514–521

    CrossRef  CAS  Google Scholar 

  • Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmad A, Akram W, Faisal M (2018) Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus. Int J Phytoremediation 20(6):581–592

    CrossRef  CAS  Google Scholar 

  • Khasheii B, Anvari S, Jamalli A (2016) Frequency evaluation of genes encoding siderophores and the effects of different concentrations of Fe ions on growth rate of uropathogenic Escherichia coli. Iran J Microbiol 8(6):359–365

    Google Scholar 

  • Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. In: Advances in microbial physiology, vol 71. Academic Press, San Diego, pp 97–132

    Google Scholar 

  • Kumar V (2019) Synergism between microbes and plants for soil contaminants mitigation. In: Amelioration technology for soil sustainability. IGI Global, Hershey, pp 101–134

    CrossRef  Google Scholar 

  • Kumari S, Varma A, Tuteja N, Choudhary DK (2016) Bacterial ACC-deaminase: an eco-friendly strategy to cope abiotic stresses for sustainable agriculture. In: Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 165–185

    CrossRef  Google Scholar 

  • Lal S, Ratna S, Said OB, Kumar R (2018) Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology. Environ Technol Innov 10:243–263

    CrossRef  Google Scholar 

  • Li X, Wang X, Chen Y, Yang X, Cui Z (2019a) Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment. Ecotoxicol Environ Saf 168:1–8

    CAS  CrossRef  Google Scholar 

  • Li X, Yan Z, Gu D, Li D, Tao Y, Zhang D, Su L, Ao Y (2019b) Characterization of cadmium resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake. J Basic Microbiol 59(6):579–590

    CAS  CrossRef  Google Scholar 

  • Liao C, Xu W, Lu G, Deng F, Liang X, Guo C, Dang Z (2016) Biosurfactant-enhanced phytoremediation of soils contaminated by crude oil using maize (Zea mays. L). Ecol Eng 92:10–17

    CrossRef  Google Scholar 

  • Lim MW, Von Lau E, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil-present works and future directions. Mar Pollut Bull 109(1):14–45

    CAS  CrossRef  Google Scholar 

  • Ma Y, Zhang C, Oliveira RS, Freitas H, Luo Y (2016a) Bioaugmentation with endophytic bacterium E6S homologous to Achromobacter piechaudii enhances metal rhizoaccumulation in host Sedum plumbizincicola. Front Plant Sci 7:75. https://doi.org/10.3389/fpls.2016.00075

    CrossRef  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016b) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    CAS  Google Scholar 

  • Ma Y, Rajkumar M, Oliveira RS, Zhang C, Freitas H (2019) Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater 379:120813

    CAS  CrossRef  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    CAS  CrossRef  Google Scholar 

  • Mehetre GT, Dastager SG, Dharne MS (2019) Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria. Sci Total Environ 679:52–60

    CAS  CrossRef  Google Scholar 

  • Mishra A, Mishra SP, Arshi A, Agarwal A, Dwivedi SKS (2020) Plant-microbe interactions for bioremediation and phytoremediation of environmental pollutants and agro-ecosystem development. In: Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 415–436

    CrossRef  Google Scholar 

  • Mondal M, Biswas JK, Tsang YF, Sarkar B, Sarkar D, Rai M, Sarkar SK, Hooda PS (2019) A wastewater bacterium Bacillus sp. KUJM2 acts as an agent for remediation of potentially toxic elements and promoter of plant (Lens culinaris) growth. Chemosphere 232:439–452

    CAS  CrossRef  Google Scholar 

  • Moreira H, Pereira SI, Marques AP, Rangel AO, Castro PM (2019) Effects of soil sterilization and metal spiking in plant growth promoting rhizobacteria selection for phytotechnology purposes. Geoderma 334:72–81

    CAS  CrossRef  Google Scholar 

  • Mukherjee G, Saha C, Naskar N, Mukherjee A, Mukherjee A, Lahiri S, Majumadar AL, Seal A (2018) An endophytic bacterial consortium modulates multiple strategies to improve arsenic phytoremediation efficacy in Solanum nigrum. Sci Rep 8(1):6979

    CrossRef  CAS  Google Scholar 

  • Nayak AK, Panda SS, Basu A, Dhal NK (2018) Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremediation 20(7):682–691

    CAS  CrossRef  Google Scholar 

  • Nayak AK, Basu A, Panda SS, Dhal NK, Lal RK (2019) Phytoremediation of heavy metal-contaminated tailings soil by symbiotic interaction of Cymbopogon citratus and Solanum torvum with Bacillus Cereus T1B3. Soil Sediment Contam Int J 28(6):547–568

    CAS  CrossRef  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15(3):225–230

    CAS  CrossRef  Google Scholar 

  • Nicoara A, Neagoe A, Stancu P, de Giudici G, Langella F, Sprocati AR, Lordache V, Kothe E (2014) Coupled pot and lysimeter experiments assessing plant performance in microbially assisted phytoremediation. Environ Sci Pollut Res 21(11):6905–6920

    CAS  CrossRef  Google Scholar 

  • Olatunji OS (2019) Evaluation of selected polychlorinated biphenyls (PCBs) congeners and dichlorodiphenyltrichloroethane (DDT) in fresh root and leafy vegetables using GC-MS. Sci Rep 9(1):538

    CrossRef  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184(1–4):105–126

    CAS  CrossRef  Google Scholar 

  • Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202

    CAS  CrossRef  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    CAS  CrossRef  Google Scholar 

  • Pinto AP, De Varennes A, Fonseca R, Teixeira DM (2015) Phytoremediation of soils contaminated with heavy metals: techniques and strategies. In: Phytoremediation. Springer, Cham, pp 133–155

    Google Scholar 

  • Pinto AP, de Varennes A, Lopes ME, Teixeira DM (2016) Biological approaches for remediation of metal-contaminated sites. In: Phytoremediation. Springer, Cham, pp 65–112

    CrossRef  Google Scholar 

  • Pinto AP, de Varennes A, Dias CMB, Lopes ME (2018) Microbial-assisted phytoremediation: a convenient use of plant and microbes to clean up soils. In: Phytoremediation. Springer, Cham, pp 21–87

    CrossRef  Google Scholar 

  • Płociniczak T, Chodor M, Pacwa-Płociniczak M, Piotrowska-Seget Z (2019) Metal-tolerant endophytic bacteria associated with Silene vulgaris support the Cd and Zn phytoextraction in non-host plants. Chemosphere 219:250–260

    CrossRef  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540

    CAS  CrossRef  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160

    CAS  CrossRef  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    CAS  CrossRef  Google Scholar 

  • Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant-metal-microbe interactions. Environ Int 53:74–86

    CAS  CrossRef  Google Scholar 

  • Rani R, Kumar V, Usmani Z, Gupta P, Chandra A (2019) Influence of plant growth promoting rhizobacterial strains Paenibacillus sp. IITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 using Helianthus annuus on degradation of endosulfan from contaminated soil. Chemosphere 225:479–489

    CAS  CrossRef  Google Scholar 

  • Raskin I, Kumar PN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5(3):285–229

    CAS  CrossRef  Google Scholar 

  • Rastogi S, Kumar J, Kumar R (2019) An investigation into the efficacy of fungal biomass as a low cost bio-adsorbent for the removal of lead from aqueous solutions. Int Res J Eng Technol 6(3):7144–7149

    Google Scholar 

  • Rastogi S, Kumar R (2020) Remediation of heavy metals using non-conventional adsorbents and biosurfactant-producing bacteria. In: Kumar V, Singh J, Kumar P (Eds) Environmental Degradation: Causes and Remediation Strategies. pp 133–153

    Google Scholar 

  • Rehman K, Imran A, Amin I, Afzal M (2018) Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J Hazard Mater 349:242–251

    CAS  CrossRef  Google Scholar 

  • Ryszka P, Lichtscheidl I, Tylko G, Turnau K (2019) Symbiotic microbes of Saxifraga stellaris spp. alpigena from the copper creek of Schwarzwand (Austrian Alps) enhance plant tolerance to copper. Chemosphere 228:183–194

    CAS  CrossRef  Google Scholar 

  • Said OB, da Silva MM, Hannier F, Beyrem H, Chicharo L (2018) Using Sarcocornia fruticose and Saccharomyces cerevisiae to remediate metal contaminated sediments of the Ria Formosa lagoon (SE Portugal). Ecohydrol Hydrobiol 19:588. https://doi.org/10.1016/j.ecohyd.2018.10.002

    CrossRef  Google Scholar 

  • Salam JA, Hatha MA, Das N (2017) Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. J Environ Manag 193:394–399

    CrossRef  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13(5):468–475

    CAS  Google Scholar 

  • Samardjieva KA, Tavares F, Pissarra J (2015) Histological and ultrastructural evidence for zinc sequestration in Solanum nigrum L. Protoplasma 252(1):345–357

    CAS  CrossRef  Google Scholar 

  • Sampaio CJ, de Souza JR, Damiao AO, Bahiense TC, Roque MR (2019) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a diesel oil-contaminated mangrove by plant growth-promoting rhizobacteria. 3 Biotech 9(4):155. https://doi.org/10.1007/s13205-019-1686-8

    CrossRef  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    CAS  CrossRef  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes: ecotoxicological effects, health hazards, and bioremediation approaches. In: Environmental pollutants and their bioremediation approaches. CRC Press, Milton, pp 23–56

    Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev Environ Contam Toxicol 249:71–131

    Google Scholar 

  • Schmalenberger A, O’Sullivan O, Gahan J, Cotter PD, Courtney R (2013) Bacterial communities established in bauxite residues with different restoration histories. Environ Sci Technol 47(13):7110–7119

    CAS  CrossRef  Google Scholar 

  • Shafiq M, Jamil S (2012) Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet. J Hazard Mater 237:186–193

    Google Scholar 

  • Shahid M, Javed MT, Masood S, Akram MS, Azeem M, Ali Q, Gilani R, Basit F, Abid A, Lindberg S (2019) Serratia sp. CP13 augments the growth of cadmium (Cd) stressed Linum usitatissimum L. by limited Cd uptake, enhanced nutrient acquisition and antioxidative potential. J Appl Microbiol 126(6):1708–1721

    CAS  CrossRef  Google Scholar 

  • Sharma P, Pandey S (2014) Status of phytoremediation in world scenario. Int J Environ Bioremed Biodegrad 2(4):178–191

    Google Scholar 

  • Shayler H, McBride M, Harrison E (2017) Cornell Waste Management Institute. Retrieved from Department of Crop & Soil Sciences, http://cwmi.css.cornell.edu

  • Sheoran V, Sheoran AS, Poonia P (2010) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41(2):168–214

    CrossRef  Google Scholar 

  • Shi Y, Xie H, Cao L, Zhang R, Xu Z, Wang Z, Deng Z (2017) Effects of Cd-and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. Environ Sci Pollut Res 24(1):417–426

    CAS  CrossRef  Google Scholar 

  • Shiri M, Rabhi M, Abdelly C, Amrani AEI (2015) The halophytic model plant Thellungiella salsuginea exhibited increased tolerance to phenanthrene-induced stress in comparison with the glycophitic one Arabidopsis thaliana: application for phytoremediation. Ecol Eng 74:125–134

    CrossRef  Google Scholar 

  • Silambarasan S, Logeswari P, Cornejo P, Abraham J, Valentine A (2019) Simultaneous mitigation of aluminum, salinity and drought stress in Lactuca sativa growth via formulated plant growth promoting Rhodotorula mucilaginosa CAM4. Ecotoxicol Environ Saf 180:63–72

    CAS  CrossRef  Google Scholar 

  • Srut M, Menke S, Hockner M, Sommer S (2019) Earthworms and cadmium-heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotoxicol Environ Saf 171:843–853

    CAS  CrossRef  Google Scholar 

  • Staniforth S (ed) (2013) Historical perspectives on preventive conservation. Getty Publications, Los Angeles, p 6

    Google Scholar 

  • Stockholm convention (COP9) on POPs report online (n.d.) https://www.meti.go.jp/english/press/2019/0514_001.html. Accessed 05 Jul 2019

  • Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341. https://doi.org/10.3389/fmicb.2016.00341

    CrossRef  Google Scholar 

  • UNEP (2006) https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response. Accessed 2019

  • Valentin-Vargas A, Root RA, Neilson JW, Chorover J, Maier RM (2014) Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment. Sci Total Environ 500:314–324

    CrossRef  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16(7):765–794

    CAS  CrossRef  Google Scholar 

  • Wang B, Wang Q, Liu W, Liu X, Hou J, Teng Y, Luo Y, Christie P (2017) Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species. Chemosphere 182:137–142

    CAS  CrossRef  Google Scholar 

  • Wani RA, Ganai BA, Shah MA, Uqab B (2017) Heavy metal uptake potential of aquatic plants through phytoremediation technique—a review. J Bioremed Biodegr 8(404):2. https://doi.org/10.4172/2155-6199.1000404

    CAS  CrossRef  Google Scholar 

  • Wani PA, Garba SH, Wahid S, Hussaini NA, Mashood KA (2019) Prevention of oxidative damage and phytoremediation of Cr (VI) by chromium (VI) reducing Bacillus subtilus PAW3 in cowpea plants. Bull Environ Contam Toxicol 103(3):476–483

    CAS  CrossRef  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27(10):591–598

    CAS  CrossRef  Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158(7):2422–2427

    CAS  CrossRef  Google Scholar 

  • Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in environment, threats on ecosystem and bioremediation approaches. In: Handbook of metal microbe interactions and bioremediation. CRC Press, Boca Raton, p 813

    Google Scholar 

  • Yongpisanphop J, Babel S, Kurisu F, Kruatrachue M, Pokethitiyook P (2019) Isolation and characterization of Pb-resistant plant growth promoting endophytic bacteria and their role in Pb accumulation by fast-growing trees. Environ Technol:1–9. https://doi.org/10.1080/09593330.2019.1615993

  • Zhang X, Li X, Yang H, Cui Z (2018) Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum. Ecotoxicol Environ Saf 157:21–28

    CAS  CrossRef  Google Scholar 

  • Zhao X, Huang J, Lu J, Sun Y (2019) Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicol Environ Saf 170:218–226

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgement

One of the author (Sheel Ratna) is highly thankful to research grant F.15-6 (NOV. 2017)/2018(NET) University Grant Commission, New Delhi, India. Facilities provided by the University (BBAU) and citation of research work of all the researchers are duly acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ratna, S., Rastogi, S., Kumar, R. (2021). Phytoremediation: A Synergistic Interaction Between Plants and Microbes for Removal of Unwanted Chemicals/Contaminants. In: Sharma, A. (eds) Microbes and Signaling Biomolecules Against Plant Stress. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-7094-0_11

Download citation