Skip to main content

Spatial Navigation

  • Chapter
  • First Online:
Neural Circuits of Innate Behaviors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1284))

Abstract

The hippocampus is critical for spatial navigation. In this review, we focus on the role of the hippocampus in three basic strategies used for spatial navigation: path integration, stimulus–response association, and map-based navigation. First, the hippocampus is not required for path integration unless the path of path integration is too long and complex. The hippocampus provides mnemonic support when involved in the process of path integration. Second, the hippocampus’s involvement in stimulus–response association is dependent on how the strategy is conducted. The hippocampus is not required for the habit form of stimulus–response association. Third, while the hippocampus is fully engaged in map-based navigation, the shared characteristics of place cells, grid cells, head direction cells, and other spatial encoding cells, which are detected in the hippocampus and associated areas, offer a possibility that there is a stand-alone allocentric space perception (or mental representation) of the environment outside and independent of the hippocampus, and the spatially specific firing patterns of these spatial encoding cells are the unfolding of the intermediate stages of the processing of this allocentric spatial information when conveyed into the hippocampus for information storage or retrieval. Furthermore, the presence of all the spatially specific firing patterns in the hippocampus and the related neural circuits during the path integration and map-based navigation support such a notion that in essence, path integration is the same allocentric space perception provided with only idiothetic inputs. Taken together, the hippocampus plays a general mnemonic role in spatial navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgments

The authors are grateful to Ms. J. Lou for help in composing the figures. This work was supported by grants from the National Natural Science Foundation of China (No. 31861143038, 81671106) and the Ministry of Science and Technology of China (2015CB759500, 2018YFA0109600). X. Chen is a junior fellow of the CAS Center for Excellence in Brain Science and Intelligence Technology.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jin, W., Qin, H., Zhang, K., Chen, X. (2020). Spatial Navigation. In: Wang, H. (eds) Neural Circuits of Innate Behaviors. Advances in Experimental Medicine and Biology, vol 1284. Springer, Singapore. https://doi.org/10.1007/978-981-15-7086-5_7

Download citation

Publish with us

Policies and ethics