Skip to main content

Impact of Fermentation Types on Enzymes Used for Biofuels Production

Part of the Clean Energy Production Technologies book series (CEPT)

Abstract

Biofuels are a sustainable and renewable source of energy that can be produced from energy crops (like sugarcane and corn), vegetable oil, microbes, organic waste, or biomass. It emits a reduced amount of carbon dioxide as compared to conventional fuels, and in this way, it plays an essential role in lessening the emission of carbon dioxide. Now-a-days, the global energy market has been progressing swiftly because of the reduction of fossil fuels, a perpetual increase in the world population, and industrialized economy. Due to an increase in demand for fuels and its consequent impact of depleting eco-friendly environmental condition and global warming upshots, the development of alternate energy are prime priorities in the research and development area. The bioenergy generated from the biomass signifies a sustainable alternative energy reservoir that gained immense recognition in different divisions from government, public, industries, and researches for its sustainability. The need of these alternative sources is because of toxic gases emission as these gases commence to adverse effects like receding of glaciers, a decline of biodiversity, weather variation, and raise in sea level, and the tremendous requirement for this fossil fuel is additionally affecting the global economic ventures since there is an escalation in the rates of crude oil. The high-speedy modern world progresses by both industrialization and motorization, and it is the primary reason for the inconstant fuel demand. So, promptly the researchers are continuously working in the production of sustainable biofuel from sustainable biomass, acknowledging it as an efficient alternative to supersede non-renewable fuels (Gaurav et al. 2017).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-7070-4_1
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-15-7070-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5

References

  • Alvira P, Ballesteros M, Negro MJ (2013) Progress on enzymatic saccharification technologies for biofuels production. In: Biofuel technologies. Springer, Berlin, Heidelberg, pp 145–169

    CrossRef  Google Scholar 

  • Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep 10:52–61

    Google Scholar 

  • Baldrian P (2006) Fungal laccases: occurrence and properties. FEMS Microbiol Rev 30:215–242

    CrossRef  CAS  PubMed  Google Scholar 

  • Bertrand E, Vandenberghe LP, Soccol CR, Sigoillot JC, Faulds C (2016) First generation bioethanol. In: Green fuels technology. Springer, Cham, pp 175–212

    CrossRef  Google Scholar 

  • Binod P, Gnansounou E, Sindhu R, Pandey A (2019) Enzymes for second generation biofuels: recent developments and future perspectives. Bioresour Technol Rep 5:317–325

    CrossRef  Google Scholar 

  • Chen WC, Lin YC, Ciou YL, Chu IM, Tsai SL, Lan JCW et al (2017) Producing bioethanol from pretreated-wood dust by simultaneous saccharification and co-fermentation process. J Taiwan Inst Chem Eng 79:43–48

    CrossRef  CAS  Google Scholar 

  • Coyne JM, Gupta VK, O’Donovon A, Tuohy MG (2013) The role of fungal enzymes in global biofuel production technologies. In: Biofuel technologies. Springer, Berlin, Heidelberg, pp 121–143

    CrossRef  Google Scholar 

  • D’Souza TM, Merritt CS, Reddy CA (1999) Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65:5307–5313

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Dahnum D, Tasum SO, Triwahyuni E, Nurdin M, Abimanyu H (2015) Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia 68:107–116

    CrossRef  CAS  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • De Blasio C (2019) Fundamentals of biofuels engineering and technology. Springer, Berlin

    CrossRef  Google Scholar 

  • Du C, Zhao X, Liu D, Lin CSK, Wilson K, Luque R, Clark J (2016) Introduction: an overview of biofuels and production technologies. In: Handbook of biofuels production. Woodhead Publishing, Cambridge, pp 3–12

    Google Scholar 

  • Gagliano A, Nocera F, Bruno M (2018) Simulation models of biomass thermochemical conversion processes, gasification and pyrolysis, for the prediction of the energetic potential. In: Advances in renewable energies and power technologies. Elsevier, Amsterdam, pp 39–85

    CrossRef  Google Scholar 

  • Gaurav N, Sivasankari S, Kiran GS, Ninawe A, Selvin J (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sust Energ Rev 73:205–214

    CrossRef  CAS  Google Scholar 

  • Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S (2010) Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int 2011:1–8

    CrossRef  CAS  Google Scholar 

  • Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 22(3):337–343

    CrossRef  CAS  PubMed  Google Scholar 

  • Groot WJ, Luyben KCA (1986) In situ product recovery by adsorption in the butanol/isopropanol batch fermentation. Appl Microbiol Biotechnol 25(1):29–31

    CrossRef  CAS  Google Scholar 

  • Jonsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory byproducts and strategies for minimising their effects. Bioresour Technol 199:103–112

    CrossRef  CAS  PubMed  Google Scholar 

  • Kumar S, Sani RK (2018) Biorefining of biomass to biofuels. Springer, Cham

    CrossRef  Google Scholar 

  • Lee WG, Park BG, Chang YK, Chang HN, Lee JS, Park SC (2008) Continuous ethanol production from concentrated wood hydrolysates in an internal membrane-filtration bioreactor. Biotechnol Prog 16(2):302–304

    CrossRef  CAS  Google Scholar 

  • Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H (2012) Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47:395–401

    CrossRef  CAS  Google Scholar 

  • Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes–ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20

    CrossRef  CAS  PubMed  Google Scholar 

  • Mariano AP, Qureshi N, Filho RM, Ezeji TC (2011) Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity. Biotechnol Bioeng 108(8):1757–1765

    CrossRef  CAS  PubMed  Google Scholar 

  • Martínez ÁT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez Suárez A, Río Andrade JCD (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • Monod J (1942) Research on the growth of bacterial cultures. Hermann, Paris, 211 pp

    Google Scholar 

  • Niladevi KN (2009) Ligninolytic enzymes. In: Biotechnology for agro-industrial residues utilisation. Springer, Dordrecht, pp 397–414

    CrossRef  Google Scholar 

  • O’Donovan A, Gupta VK, Coyne JM, Tuohy MG (2013) Acid pre-treatment technologies and SEM analysis of treated grass biomass in biofuel processing. In: Biofuel technologies. Springer, Berlin, Heidelberg, pp 97–118

    CrossRef  Google Scholar 

  • Obernberger I, Biedermann F (2012) Biomass energy heat provision in modern large-scale systems. In: Encyclopedia of sustainability science and technology. Springer, New York, pp 1312–1350

    CrossRef  Google Scholar 

  • Ortiz-Muñiz B, Carvajal-Zarrabal O, Torrestiana-Sanchez B, Aguilar-Uscanga MG (2010) Kinetic study on ethanol production using Saccharomyces cerevisiae ITV-01 yeast isolated from sugar cane molasses. J Chem Technol Biotechnol 85(10):1361–1367

    CrossRef  CAS  Google Scholar 

  • Oudshoorn A, Van Der Wielen LA, Straathof AJ (2009a) Assessment of options for selective 1-butanol recovery from aqueous solution. Ind Eng Chem Res 48(15):7325–7336

    CrossRef  CAS  Google Scholar 

  • Oudshoorn A, van der Wielen LA, Straathof AJ (2009b) Adsorption equilibria of bio-based butanol solutions using zeolite. Biochem Eng J 48(1):99–103

    CrossRef  CAS  Google Scholar 

  • Patinvoh RJ, Taherzadeh MJ (2019) Fermentation processes for second-generation biofuels. In: Second and third generation of Feedstocks. Elsevier, Amsterdam, pp 241–272

    CrossRef  Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-a resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    CrossRef  CAS  PubMed  Google Scholar 

  • Qi B, Luo J, Chen G, Chen X, Wan Y (2012) Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolyzate of steam exploded wheat straw. Bioresour Technol 104:466–472

    CrossRef  CAS  PubMed  Google Scholar 

  • Qureshi N, Blaschek HP (1999) Production of acetone butanol ethanol (ABE) by a hyper-producing mutant strain of Clostridium beijerinckii BA101 and recovery by pervaporation. Biotechnol Prog 15:594–602

    CrossRef  CAS  PubMed  Google Scholar 

  • Raud M, Kikas T, Sippula O, Shurpali NJ (2019) Potentials and challenges in lignocellulosic biofuel production technology. Renew Sust Energ Rev 111:44–56

    CrossRef  CAS  Google Scholar 

  • Robak K, Balcerek M (2018) Review of second generation bioethanol production from residual biomass. Food Technol Biotechnol 56(2):174–187

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-León JA, de Carvalho JC, Pandey A, Soccol CR, Rodríguez-Fernández DE (2018) Kinetics of the solid-state fermentation process. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 57–82

    CrossRef  Google Scholar 

  • Sipos B, Szilágyi M, Sebestyén Z, Perazzini R, Dienes D, Jakab E, Crestini C, Réczey K (2011) Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. C R Biol 334:812–823

    CrossRef  CAS  PubMed  Google Scholar 

  • Taherzadeh MJ, Karmi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2:707–738

    CAS  Google Scholar 

  • Vasquez ER, Eldredge T (2011) Process modeling for hydrocarbon fuel conversion. In: Advances in clean hydrocarbon fuel processing. Woodhead Publishing, Cambridge, pp 509–545

    CrossRef  Google Scholar 

  • Xiao Z, Zhang X, Greff DJ, Saddler JN (2004) Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl Biochem Biotechnol 113–116:1115–1126

    CrossRef  PubMed  Google Scholar 

  • Xiros C, Christakopoulos P (2009) Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels 2:4

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue C, Zhao J, Lu C, Yang ST, Bai F, Tang IC (2012) High-titer n-butanol production by clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping. Biotechnol Bioeng 109(11):2746–2756

    CrossRef  CAS  PubMed  Google Scholar 

  • Xue C, Zhao JB, Chen LJ, Bai FW, Yang ST, Sun JX (2014) Integrated butanol recovery for an advanced biofuel: current state and prospects. Appl Microbiol Biotechnol 98(8):3463–3474

    CrossRef  CAS  PubMed  Google Scholar 

  • Yang M, Zhang A, Liu B, Li W, Xing J (2011) Improvement of cellulose conversion caused by the protection of Tween-80 on the adsorbed cellulase. Biochem Eng J 56:125–129

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Paul, V., Rai, S., Tripathi, A.D., Rai, D.C., Agarwal, A. (2021). Impact of Fermentation Types on Enzymes Used for Biofuels Production. In: Srivastava, N., Srivastava, M., Mishra, P., Gupta, V.K. (eds) Bioprocessing for Biofuel Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-15-7070-4_1

Download citation